Perturbation theory in systems with long-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 410-414

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional model with interaction energy $E=-I\sum_{i\not=j} e^{-\gamma(|i-j|-1)} \mu_i \mu_j$ of a definite configuration of spins is considered. A perturbation theory for large $\gamma$ is developed, the zeroth approximation being the model with only nearest-neighbor interaction. It is shown that at large $\gamma$ the free energy can be represented by a series in powers of $e^{-\gamma}$. The values of $\gamma$ for which this expansion is valid are found. The possibility of applying the method to two- and three-dimensional systems is considered.
@article{TMF_1982_50_3_a10,
     author = {G. V. Klimachev},
     title = {Perturbation theory in systems with long-range potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--414},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a10/}
}
TY  - JOUR
AU  - G. V. Klimachev
TI  - Perturbation theory in systems with long-range potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 410
EP  - 414
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a10/
LA  - ru
ID  - TMF_1982_50_3_a10
ER  - 
%0 Journal Article
%A G. V. Klimachev
%T Perturbation theory in systems with long-range potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 410-414
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a10/
%G ru
%F TMF_1982_50_3_a10
G. V. Klimachev. Perturbation theory in systems with long-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 3, pp. 410-414. http://geodesic.mathdoc.fr/item/TMF_1982_50_3_a10/