Statistical mechanics of a~paramagnetic chain
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 286-300
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The transfer matrix method is used to find the exact partitiorJ function in the thermodynamic limit of a two-level system coupled to a one-dimensional elastic, cyclically closed chain of atoms. The number of two-level objects ($\dfrac12$ spins) is equal to the number of degrees of freedom of the chain (the number of modes). The spin system is in a transverse field $\omega_0$, and the chain in a linear potential $\alpha\varphi^2$. The following results are obtained. At $\omega_0=0$, the problem is equivalent to the one-dimensional Kac model with antiferromagnetic exchange interaction between the spins. There is no phase transition in the system at any $\omega_0$ in contrast to the case with a finite
number of field modes. The interaction of the spins with the lattice suppresses the
Curie paramagnetism, and in the limit $T\to0$ the transverse susceptibility of the
system remains finite.
			
            
            
            
          
        
      @article{TMF_1982_50_2_a9,
     author = {A. F. Sadreev},
     title = {Statistical mechanics of a~paramagnetic chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {286--300},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a9/}
}
                      
                      
                    A. F. Sadreev. Statistical mechanics of a~paramagnetic chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 286-300. http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a9/