Chew–Low equations as cremona transformations structure of general intgrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 251-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Chew–Low equations for the $p$ waves of pion-nucleon scattering with ($3\times3$) crossing symmetry matrix are investigated in the well-known form of a nonlinear system of difference equations. It is shown these equations, interpreted as geometrical transformations, are a special case of Cremona transformations. Using the properties of Cremona transformations, we obtain general functional equations, which depend on three parameters, for algebraic and nonalgebraic invariant curves in the space of solutions of the Chew–Low equations. It is shown that there is only one algebraic invariant curve, a parabola corresponding to the well-known solution. Analysis of the general functional equation for nonalgebraic invariant curves shows that besides this parabola there are three invariant forms which specify implicitly three nonalgebraic curves: a general equation for them is found by fixing the parameters. An important result follows from the transformation properties of these invariant forms with respect to Cremona transformations, namely, the ratio of these forms to appropriate powers is a general integral of the nonlinear system of Chew–Low equations: it is an even antiperiodic function. The structure of a second general integral and the functional equation of which it is a solution are given.
@article{TMF_1982_50_2_a6,
     author = {K. V. Rerikh},
     title = {Chew{\textendash}Low equations as cremona transformations structure of general intgrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--260},
     year = {1982},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a6/}
}
TY  - JOUR
AU  - K. V. Rerikh
TI  - Chew–Low equations as cremona transformations structure of general intgrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 251
EP  - 260
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a6/
LA  - ru
ID  - TMF_1982_50_2_a6
ER  - 
%0 Journal Article
%A K. V. Rerikh
%T Chew–Low equations as cremona transformations structure of general intgrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 251-260
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a6/
%G ru
%F TMF_1982_50_2_a6
K. V. Rerikh. Chew–Low equations as cremona transformations structure of general intgrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 251-260. http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a6/

[1] Chew G. F., Low F. E., Phys. Rev., 101:5 (1956), 1570 | DOI | MR | Zbl

[2] Shirkov D. V., Serebryakov V. V., Mescheryakov V. A., Dispersionnye teorii silnykh vzaimodeistvii pri nizkikh energiyakh, Nauka, M., 1967

[3] Mescheryakov V. A., Metod postroeniya nekotorykh klassov reshenii uravnenii tipa uravnenii Chu-Lou, Preprint R-2369, OIYaI, Dubna, 1965

[4] Meshcheryakov V. A., Rerikh K. V., Ann. Phys., 59:2 (1970), 408 | DOI | MR

[5] Wanders G., Nuovo Cim., 23:5 (1962), 817 | DOI | MR | Zbl

[6] Rothelutner T., Z. Phys., 177:3 (1964), 287 | DOI

[7] Mescheryakov V. A., ZhETF, 51:2 (1966), 648

[8] Zhuravlev V. I., Mescheryakov V. A., Rerikh K. V., YaF, 10:1 (1969), 168 | MR

[9] Mescheryakov V. A., Rerikh K. V., O funktsionalnykh sootnosheniyakh mezhdu matrichnymi elementami uprugogo rasseyaniya staticheskoi $S$-matritsy, Preprint R2-4356, OIYaI, Dubna, 1969

[10] Rerikh K. V., Metod funktsionalnykh svyazei dlya resheniya uravnenii staticheskoi modeli, Avtoref. dis. na soiskanie uch. st. kand. fiz.-mat. nauk, 2-5451, OIYaI, Dubna, 1970

[11] Mescheryakov V. A., Invariantnye mnogoobraziya uravneniya Chu-Lou, Preprint R2-5906, OIYaI, Dubna, 1971

[12] Mescheryakov V. A., Invariantnye mnogoobraziya uravneniya Chu-Lou (prodolzhenie), Preprint R2-7047, OIYaI, Dubna, 1973

[13] Gerdt V. P., Mescheryakov V. A., Lokalnoe issledovanie tochek pokoya uravneniya tipa uravneniya Chu-Lou, Preprint R2-7976, OIYaI, Dubna, 1974

[14] Gerdt V. P., Mescheryakov V. A., TMF, 24:2 (1975), 155 | MR

[15] Rerikh K. V., Funktsionalnye uravneniya gruppy iteratsii i uravneniya Chu-Lou, Preprint R2-12714, OIYaI, Dubna, 1979

[16] Hudson H., Cremona transformations in plane and space, University Press, Cambridge, 1927 | MR | Zbl

[17] Rerikh K. V., Uravneniya tipa uravnenii Chu-Lou kak preobrazovaniya Kremona. Struktura obschego integrala, Preprint R2-80-718, OIYaI, Dubna, 1980

[18] Kaiser H., Ann. Phys., 7F, 27:2 (1971), 149 | DOI | MR