$1/n$ expansion: clculation of the exponent $\eta$ in the order $1/n^3$ by the conformal bootstrap method
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 195-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For arbitrary causal functions satisfying the spectral condition Tauberian theorems are established which give a correspondence between their self-similar asymptotic behavior and their asymptotic behavior in the neighborhood of the light cone.
@article{TMF_1982_50_2_a1,
     author = {A. N. Vasil'ev and Yu. M. Pis'mak and Yu. R. Khonkonen},
     title = {$1/n$ expansion: clculation of the exponent $\eta$ in the order $1/n^3$ by the conformal bootstrap method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--206},
     year = {1982},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a1/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - Yu. M. Pis'mak
AU  - Yu. R. Khonkonen
TI  - $1/n$ expansion: clculation of the exponent $\eta$ in the order $1/n^3$ by the conformal bootstrap method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 195
EP  - 206
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a1/
LA  - ru
ID  - TMF_1982_50_2_a1
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A Yu. M. Pis'mak
%A Yu. R. Khonkonen
%T $1/n$ expansion: clculation of the exponent $\eta$ in the order $1/n^3$ by the conformal bootstrap method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 195-206
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a1/
%G ru
%F TMF_1982_50_2_a1
A. N. Vasil'ev; Yu. M. Pis'mak; Yu. R. Khonkonen. $1/n$ expansion: clculation of the exponent $\eta$ in the order $1/n^3$ by the conformal bootstrap method. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 195-206. http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a1/

[1] Brézin E., Le Guillou J. C., Zinn-Justin J., Phase transitions and critical phenomena, 6, eds. G. Domb, M. Green, Academic Press, New York, 1976 | MR

[2] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980, 298 pp.

[3] Brézin E., Zinn-Justin J., Phys. Rev., B14:7 (1976), 3110 | DOI

[4] Ma S., Phys. Rev., A7:6 (1973), 2172

[5] Abe R., Progr. Theor. Phys., 49:6 (1973), 1877 | DOI

[6] Kondor I., Temesvári T., Herényi L., Phys. Rev., B22:3 (1980), 1451 | DOI

[7] Okabe Y., Oku M., Abe R., Progr. Theor. Phys., 59:6 (1978), 1825 ; 60:5 (1978), 1277 ; 61:2 (1979), 443 | DOI | DOI | DOI | MR

[8] Vasilev A. N., Pismak Yu. M., Khonkonen Yu. R., TMF, 47:3 (1981), 291

[9] Bay A. J., Phys. Rev. Lett., 32:25 (1974), 1413 | DOI

[10] Vasilev A. N., Pismak Yu. M., Khonkonen Yu. R., TMF, 46:2 (1981), 157 | MR

[11] Vasilev A. N., Pismak Yu. M., Khonkonen Yu. R., TMF, 48:3 (1981), 284

[12] Fradkin E. S., Palchik M., Phys. Rev., 44:5 (1978), 250 | MR

[13] Polyakov A. M., Pisma ZhETF, 12:11 (1970), 538

[14] Parisi G., Lett. Nuovo Cim., 4:15 (1972), 777 | DOI | MR

[15] Chetyrkin K. G., Tkachev F. V., Novyi podkhod k vychisleniyu mnogopetlevykh feinmanovskikh integralov, Preprint R-0018, IYaI, M., 1979

[16] Hikami S., Progr. Theor. Phys., 62:1 (1979), 226 | DOI

[17] Mandelstam S., Phys. Rev., D20:12 (1979), 3223