Self-similar asymptotic behavior of causal functions and their behavior on the light cone
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 163-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For arbitrary causal functions satisfying the spectral condition Tauberian theorems are established which give a correspondence between their self-similar asymptotic behavior and their asymptotic behavior in the neighborhood of the light cone.
@article{TMF_1982_50_2_a0,
     author = {V. S. Vladimirov and B. I. Zavialov},
     title = {Self-similar asymptotic behavior of causal functions and their behavior on the~light cone},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--194},
     year = {1982},
     volume = {50},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a0/}
}
TY  - JOUR
AU  - V. S. Vladimirov
AU  - B. I. Zavialov
TI  - Self-similar asymptotic behavior of causal functions and their behavior on the light cone
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 163
EP  - 194
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a0/
LA  - ru
ID  - TMF_1982_50_2_a0
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%A B. I. Zavialov
%T Self-similar asymptotic behavior of causal functions and their behavior on the light cone
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 163-194
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a0/
%G ru
%F TMF_1982_50_2_a0
V. S. Vladimirov; B. I. Zavialov. Self-similar asymptotic behavior of causal functions and their behavior on the light cone. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 2, pp. 163-194. http://geodesic.mathdoc.fr/item/TMF_1982_50_2_a0/

[1] Vladimirov V. S., Zavyalov B. I., TMF, 40:1 (1979), 155–178 | MR

[2] Bogolyubov N. N., Vladimirov V. S., Tavkhelidze A. N., TMF, 12:1 (1972), 3–17 ; 3, 305–330 | MR

[3] Zavyalov B. I., TMF, 17:2 (1973), 178–188 | MR

[4] Zavyalov B. I., TMF, 33:3 (1977), 310–317 | MR

[5] Zavyalov B. I., TMF, 19:2 (1974), 163–171 | MR

[6] Logunov A. A., Mestvirishvili M. A., Petrov V. A., TMF, 32:1 (1977), 3–33 | MR

[7] Bogolyubov N. N., Logunov A. A., Todorov I. T., Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR

[8] Jost R., Lehmann H., Nuovo Cim., 5 (1957), 1598–1610 | DOI | MR | Zbl

[9] Dyson F. J., Phys. Rev., 110 (1958), 1460–1464 | DOI | MR | Zbl

[10] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[11] Zavyalov B. I., TMF, 49:2 (1981), 147–155 | MR

[12] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[13] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, vyp. 5, Fizmatgiz, M., 1962 | MR

[14] Helgason S., “The Radon transformation”, Progress in Mathem., Birkhäuser, 1980 | DOI | MR | Zbl

[15] Natanson I. P., Konstruktivnaya teoriya funktsii, Fizmatgiz, M.–L., 1950

[16] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, M., 1958 | MR