An exactly solvable one-dimensional problem with several particle species
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 1, pp. 155-160
Cet article a éte moissonné depuis la source Math-Net.Ru
A one-dimensional system of Fermi or Bose particles With interaction potential $g/x^2$ is considered. Exact expressions are obtained for the thermodynamic functions. The binary correlation function is calculated in the ground state as $g\to\infty$. The generalization of the model to the case of several particle species is considered.
@article{TMF_1982_50_1_a8,
author = {V. Ya. Krivnov and A. A. Ovchinnikov},
title = {An~exactly solvable one-dimensional problem with several particle species},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {155--160},
year = {1982},
volume = {50},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a8/}
}
TY - JOUR AU - V. Ya. Krivnov AU - A. A. Ovchinnikov TI - An exactly solvable one-dimensional problem with several particle species JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1982 SP - 155 EP - 160 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a8/ LA - ru ID - TMF_1982_50_1_a8 ER -
V. Ya. Krivnov; A. A. Ovchinnikov. An exactly solvable one-dimensional problem with several particle species. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 1, pp. 155-160. http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a8/
[1] Sutherland B., J. Math. Phys., 12:2 (1971), 246–256 | DOI
[2] Sutherland B., Phys. Rev., A4:5 (1971), 2019–2021 | DOI
[3] Sutherland B., Phys. Rev., A5:5 (1972), 1372–1376 | DOI
[4] Perelomov A. M., Popov V. S., TMF, 4:1 (1970), 48–65 | MR
[5] Horwitz G., Brout R., Englert F., Phys. Rev., 130:1 (1963), 409–419 | DOI | MR
[6] Krivnov V. Ya., Ovchinnikov A. A., ZhETF, 76:2 (1979), 654–669 | MR