Statistical theory of diffusion. Quantum states, configurational shape of a potential, and two types of noncoherent transitions of a hydrogen atom in metals
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 1, pp. 127-145
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The configurational shape of the potential of a light atom (hydrogen) in metals with bcc lattice is calculated using the methods of many-electron theory. It is shown that localized states of the proton are formed by local displacements of the atoms of the crystal, whereas in a “rigid” lattice the quantum states are delocalized in a time of the order of the ocsillation period of the proton. Two types of noncoherent transport of the hydrogen atom – “active” and “passive” hops – are investigated by means of data on the quantum states. It is shown that the rate of high-temperature noncoherent hopping of a light atom (“active” hopping) is determined by three processes: thermal activation, tunneling accompanied by motion of the deformation cloud, and intrasite transitions of the hydrogen due to two-phonon scattering. It is shown that the observed inflection in the temperature dependence of the activation energy is due to a change in the mechanism of the elementary hydrogen diffusion process, namely, the transition from passive to active transport.
@article{TMF_1982_50_1_a6,
     author = {Yu. A. Kashlev and G. S. Solov'ev},
     title = {Statistical theory of diffusion. {Quantum} states, configurational shape of a~potential, and two types of noncoherent transitions of a~hydrogen atom in metals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--145},
     year = {1982},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a6/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
AU  - G. S. Solov'ev
TI  - Statistical theory of diffusion. Quantum states, configurational shape of a potential, and two types of noncoherent transitions of a hydrogen atom in metals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 127
EP  - 145
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a6/
LA  - ru
ID  - TMF_1982_50_1_a6
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%A G. S. Solov'ev
%T Statistical theory of diffusion. Quantum states, configurational shape of a potential, and two types of noncoherent transitions of a hydrogen atom in metals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 127-145
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a6/
%G ru
%F TMF_1982_50_1_a6
Yu. A. Kashlev; G. S. Solov'ev. Statistical theory of diffusion. Quantum states, configurational shape of a potential, and two types of noncoherent transitions of a hydrogen atom in metals. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 1, pp. 127-145. http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a6/

[1] Flynn G. P., Stoneham A. M., Phys. Rev., B1:10 (1970), 3966–3978 | DOI | MR

[2] Stoneham A. M., Ber. Bunsenger. Phys. Chem., 76:8 (1972), 816–823

[3] Stoneham A. M., J. Nucl. Mater., 69 (1978), 109–116 | DOI

[4] Kagan Yu,, Klinger M. I., J. Phys., C7 (1974), 2891–2914

[5] Graf H. et all., Phys. Rev. Lett., 44:20 (1980), 1333–1336 | DOI

[6] Hans J. W., Kitahara K., Phys. Lett., 73A:5 (1979), 433–436

[7] Matthew J. A. D., Phys. Stat. Sol., 42:22 (1970), 841–847 | DOI

[8] Sussman J. A., Weissman Y., Phys. Stat. Sol., 53:2 (1972), 419–429 | DOI

[9] Holstein T., Ann. Phys., 8:2 (1959), 325–337 | DOI | MR

[10] Goldstone J., Proc. Roy. Soc., 239:1212 (1957), 267–282 | DOI | MR

[11] Hubbard J., Proc. Roy. Soc., 240:1223 (1957), 539–566 | DOI | MR

[12] Solovev G. S., ZhETF, 68:4 (1975), 1324–1330 | MR

[13] Bonch-Bruevich V. L., FMM, 6:3 (1958), 760–775

[14] Solovev G. S., Kashlev Yu. A., FMM, 45:6 (1978), 1127–1134

[15] Teichler H., “Light-interstitial diffusion in metals”, Exotic atoms 79: fundam. interactions and struct. matter., Proc. second course int. school phys. exot. atoms, Erice, 1979, 283–302

[16] Efrima S., Metiu H., J. Chem. Phys., 69:6 (1978), 2286–2299 | DOI

[17] Kashlev Yu. A., TMF, 24:2 (1975), 265–277

[18] Sussman J. A., Ann. Phys., 6:2 (1971), 135–156 | DOI

[19] Kashlev Yu. A., Diffuzionnye protsessy v metallakh, no. 3, izd-vo Tulskogo politekhnicheskogo instituta, Tula, 1975, 22–28

[20] Gissler W., Stump N., Physica, 50:3 (1970), 380–390 | DOI

[21] Kashlev Yu. A., TMF, 14:2 (1973), 235–249

[22] Davydov A. S., Teoriya molekulyarnykh eksitonov, Nauka, M., 1968, 115 pp. | MR | Zbl

[23] Nakajima S., Progr. Theor. Phys., 20:6 (1958), 948–959 | DOI | MR | Zbl

[24] Zubarev D. N., UFN, 71:1 (1960), 71–115 | DOI | MR

[25] Gesti T., Phys. Stat. Sol., 20:3 (1967), 165–177 | DOI

[26] Omini M., Nuovo Cim., 54:2 (1968), 116–125 | DOI

[27] Frenkel Ya. I., Kineticheskaya teoriya zhidkostei, Nauka, L., 1975

[28] Kagan Yu., Maksimov L. A., ZhETF, 65:3 (1973), 622–631 | MR

[29] Landau L. D., Sobranie trudov, v. 1, Nauka, M., 1969, 90 pp. | MR

[30] Tyablikov S. V., ZhETF, 23:2 (1952), 381–391 | Zbl

[31] Zyryanov P. S., Klinger M. I., Kvantovaya teoriya yavlenii elektronnogo perenosa v kristallicheskikh poluprovodnikakh, Nauka, M., 1976

[32] Emin D., Baskes M. I., Wilson W. B., Hyperfine interactions, 6 (1979), 255–259 | DOI

[33] Lottner V. et all., J. Phys. Chem. Sol., 40 (1979), 557–563 | DOI

[34] Solovev G. S., Voprosy teorii elektronnoi struktury i energii vzaimodeistviya vodoroda v metallakh, Avtoref. dis. na soiskanie uch. step. kand. fiz.-matem. nauk, ITF, Kiev, 1976

[35] Jena P., Singwi K. S., Phys. Rev., B17:6 (1978), 3518–3524 | DOI

[36] Hohenberg H., Kohn W., Phys. Rev., 136:3B (1964), 864–871 | DOI | MR

[37] Kohn W., Shem L. J., Phys. Rev., 140:4A (1965), 1133–1138 | DOI | MR

[38] Almbladh C. O. et all., Phys. Rev., B14:6 (1976), 2250–2254 | DOI

[39] Solovev G. S., Kashlev Yu. A., Gurov K. P., “O svyazannom sostoyanii elektrona okolo protona v metalle”, Tr. Vsesoyuzn. sovesch. po fizike vzaimodeistviya zaryazh. chastits s monokristallami, MGU, M., 1975

[40] Brovman E. G., Kagan Yu., ZhETF, 52:3 (1967), 557–574