Reduction of Kählerian chiral model
Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 1, pp. 108-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Lund–Regge geometrical method is applied to a Kählerian chiral model. A connection with the gauge transformation method is revealed in the example of the $CP(2)$-model.
@article{TMF_1982_50_1_a4,
     author = {B. A. Putko},
     title = {Reduction of {K\"ahlerian} chiral model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {108--117},
     year = {1982},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a4/}
}
TY  - JOUR
AU  - B. A. Putko
TI  - Reduction of Kählerian chiral model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1982
SP  - 108
EP  - 117
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a4/
LA  - ru
ID  - TMF_1982_50_1_a4
ER  - 
%0 Journal Article
%A B. A. Putko
%T Reduction of Kählerian chiral model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1982
%P 108-117
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a4/
%G ru
%F TMF_1982_50_1_a4
B. A. Putko. Reduction of Kählerian chiral model. Teoretičeskaâ i matematičeskaâ fizika, Tome 50 (1982) no. 1, pp. 108-117. http://geodesic.mathdoc.fr/item/TMF_1982_50_1_a4/

[1] Perelomov A. M., Commun. Math. Phys., 63 (1978), 237–242 | DOI | MR | Zbl

[2] Belavin A. A., Polyakov A. M., Pisma ZhETF, 22:10 (1975), 503–506

[3] Golo V. L., Perelomov A. M., Phys. Lett., B179 (1978), 112 | DOI

[4] Pohlmeyer K., Commun. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl

[5] Semenov-Tyan-Shanskii M. A., Faddeev L. D., Vestn. LGU, 1977, no. 13, 81–88 | MR

[6] Pohlmeyer K., Rehren K.-H., Reduction of the two-dimensional $O(n)$ non-linear $\sigma$-model, Preprint D-7800, Fakultät für Physik der Universitat, Freiburg, 1978 | MR

[7] D'Auria R., Regge T., Sciuto S., Group theoretical construction of two-dimensional models with infinite set of conservation laws, Preprint I. F. T. T. 324, 1980 | MR

[8] Eichenherr H., Honerkamp J., Reduction of the two-dimensional $SU(N)$-invariant $\sigma$-models, Preprint 79/12, THEP, Freiburg, 1979

[9] Zakharov V. E., Mikhailov A. V., ZhETF, 74:6 (1978), 1953–1973 | MR

[10] Zakharov V. E., Takhtadzhyan L. A., TMF, 38:1 (1979), 26–35 | MR

[11] Eichenherr H., Nucl. Phys., B146 (1978), 215–227 | DOI

[12] D'Adda A., Luscher M., DiVecchia P., Nucl. Phys., B146 (1978), 63–76 | DOI | MR

[13] Berg B., Luscher M., Computation of quantum fluctuations around multi-instanton fields from exact Green's functions, Preprint DESY 79/17, CERN, Geneva, 1979 | MR

[14] Lund F., Regge T., Phys. Rev., D14 (1976), 1524–1535 | MR | Zbl

[15] Lund F., Phys. Rev. Lett., 38:21 (1977), 1175–1178 | DOI | MR

[16] Getmanov B. S., Pisma ZhETF, 25:2 (1977), 132–136

[17] Golo V. L., Putko B. A., TMF, 45:1 (1980), 19–29 | MR

[18] Golo V. L., Putko B. A., Lett. Math. Phys., 4 (1980), 195–200 | DOI | MR | Zbl

[19] Din A. M., Zakrewski W. J., Lett. Nuovo Cim., 28:4 (1980), 121–127 | DOI | MR

[20] Bateman H., Partial differential equations of mathematical physics, Dover, New York, 1932 | MR

[21] Leznov A. N., Saveliev M. V., Lett. Math. Phys., 3:6 (1979), 489–497 | DOI | MR

[22] Dzhordzhadze G. P., Pogrebkov A. K., Polivanov M. K., TMF, 40:2 (1979), 221–234 | MR | Zbl

[23] Chzhen Shen-Shen, Komplesknye mnogoobraziya, IL, M., 1961

[24] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[25] Slavnov A. A., Faddeev L. D., TMF, 8:3 (1971), 297–307