Equations for path mean values in non-Abelian gauge theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 3, pp. 307-319
Cet article a éte moissonné depuis la source Math-Net.Ru
The singularities in the functional equation for the simplest path Green's function $\displaystyle G(c)=\biggl
$
in non-Abelian gauge theory are studied in the framework of perturbation theory. It is shown that in the two-dimensional case $G(c)$ satisfies the equation $(\delta^2/\delta x_\mu^2(s)-m^4x^{\prime2}(s))G(c)=0$ for the wave functional of a relativistic string.@article{TMF_1981_49_3_a2,
author = {V. V. Bazhanov and A. P. Isaev},
title = {Equations for path mean values in {non-Abelian} gauge theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--319},
year = {1981},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_3_a2/}
}
V. V. Bazhanov; A. P. Isaev. Equations for path mean values in non-Abelian gauge theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 3, pp. 307-319. http://geodesic.mathdoc.fr/item/TMF_1981_49_3_a2/
[1] Polyakov A. M., Nucl. Phys., B164 (1979), 171 | MR
[2] Gervais J., Neveu A., Nucl. Phys., B163, 189 | MR | Zbl
[3] Pron'ko G., Nucl. Phys., B165 (1980), 269 | DOI
[4] Borisov N., Eides M., Joffe M., Phys. Lett., 87B (1979), 101 | DOI
[5] Aref'eva I. Ya., Lett. in Math. Phys., 3:4 (1979), 241 | DOI | MR
[6] Sakita, Phys. Rev., D21 (1980), 1067 | MR
[7] Mandelstam S., Phys. Rev., 175 (1968), 1580 ; Bialynicki-Birula I., Bull. Acad. Sci., 11 (1963), 135 | DOI | MR | Zbl
[8] Oksak A. I., Preprint 79-59, IFVE, Serpukhov, 1979
[9] Gelfand I. M., Shilov G. E., Obobschennye funktsii, vyp. 1, Fizmatgiz, M., 1959 | MR