Method of functional integration in the theory of spin systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 234-247
Voir la notice de l'article provenant de la source Math-Net.Ru
A convenient functional integral representation is proposed for the free energy and Green's function of the generalized quantum Heisenberg model. The representation can be used in the investigation of a large class of problems.
A simple functional integration gives the results of the random phase approximation in the lowest approximation. Explicit expressions are given for the free energy of some model spin systems. The higher fluctuation corrections are taken into account by means of an expansion with respect to Gaussian moments with renormalized interaction.
@article{TMF_1981_49_2_a8,
author = {I. A. Vakarchuk and Yu. K. Rudavskii},
title = {Method of functional integration in the theory of spin systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {234--247},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a8/}
}
TY - JOUR AU - I. A. Vakarchuk AU - Yu. K. Rudavskii TI - Method of functional integration in the theory of spin systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 234 EP - 247 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a8/ LA - ru ID - TMF_1981_49_2_a8 ER -
I. A. Vakarchuk; Yu. K. Rudavskii. Method of functional integration in the theory of spin systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 234-247. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a8/