Casimir operators of groups of motions of spaces of constant curvature
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 210-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Limit transitions are constructed between the generators (Casimir operators) of the center of the universal covering algebra for the Lie algebras of the groups of motions of $n$-dimensional spaces of constant curvature. A method is proposed for obtaining the Casimir operators of a group of motions of an arbitrary $n$-dimensional space of constant curvature from the known Casimir operators of the group $SO(n+1)$. The method is illustrated for the example of the groups of motions of four-dimensional spaces of constant curvature, namely, the Galileo, Poincaré, Lobachevskii, de Sitter, Carroll, and other spaces.
@article{TMF_1981_49_2_a6,
     author = {N. A. Gromov},
     title = {Casimir operators of groups of motions of spaces of constant curvature},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--218},
     year = {1981},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/}
}
TY  - JOUR
AU  - N. A. Gromov
TI  - Casimir operators of groups of motions of spaces of constant curvature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 210
EP  - 218
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/
LA  - ru
ID  - TMF_1981_49_2_a6
ER  - 
%0 Journal Article
%A N. A. Gromov
%T Casimir operators of groups of motions of spaces of constant curvature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 210-218
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/
%G ru
%F TMF_1981_49_2_a6
N. A. Gromov. Casimir operators of groups of motions of spaces of constant curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 210-218. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/

[1] Group theory and its applications, vol. 1, ed. E. M. Loebl, Academic Press, New-York–London, 1968 ; vol. 2, 1971 | MR | Zbl

[2] Kotelnikov A. P., In memoriam N. I. Lobatschevskij, 2, Kazan, 1927, 37–66 | Zbl

[3] Fok V. A., Teoriya prostranstva, vremeni i tyagoteniya, Fizmatgiz, M., 1955

[4] Chernikov N. A., Preprint R-723, OIYaI, Dubna, 1961

[5] Chernikov N. A., Preprint R2-10251, OIYaI, Dubna, 1976

[6] Golfand Yu. A., ZhETF, 37:2 (1959), 504–509

[7] Kadyshevskii V. G., DAN SSSR, 147:6 (1962), 1336–1339 | MR

[8] Chernicov N. A., Tagirov E. A., Ann. Inst. H. Poincare, IX (1968), 109

[9] Grensing G., J. Phys. A: Math. Gen., 10 (1977), 1687–1719 | DOI | MR

[10] Avis S. J., Isham C. J., Storey D., Phys. Rev. D, 18 (1978), 3565–3576 | DOI | MR

[11] Zumino B., Nucl Phys., B127:2 (1977), 189–201 | DOI | MR

[12] Fronsdal C., Phys. Rev. D, 12:12 (1975), 3819–3830 | DOI | MR

[13] Inonu E., Wigner E. P., Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl

[14] Fedenko A. S., Usp. matem. n., 12:3 (1957), 235–240 | MR | Zbl

[15] Zaitsev G. A., Algebraicheskie problemy matematicheskoi i teoreticheskoi fiziki, Nauka, M., 1974 | MR

[16] Rozenfeld B. A., Karpov L. M., Tr. seminara po vekt. i tenz. analizu, no. XIII, MGU, M., 1966, 168–202 | MR

[17] Lykhmus Ya. Kh., Predelnye (szhatye) gruppy Li, Institut fiziki i astronomii AN ESSR, Tartu, 1969 | MR

[18] Gromov N. A., Preprint Komi-filiala AN SSSR «Nauchnye doklady», No 37, Syktyvkar, 1978 | MR

[19] Yaglom I. M., Rozenfeld V. A., Yasinskaya E. U., Usp. matem. n., 19:5 (1964), 51–113 | MR | Zbl

[20] Pimenov R. I., Litovskii matem. sb., 5:3 (1965), 457–486 | MR | Zbl

[21] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M., 1956 | MR

[22] Gelfand I. M., Matem. sb., 26 (68):1 (1950), 103–113 | MR

[23] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, § 6.1, Mir, M., 1975 | MR

[24] Gromov N. A., Preprint Komi-filiala AN SSSR «Nauchnye doklady», No 51, Syktyvkar, 1979 | MR

[25] Bacry H., Lévy-Leblond J.-M., J. Math. Phys., 9 (1968), 1605–1614 | DOI | MR | Zbl

[26] Derome J.-R., Dubois J.-A., Nuovo Cim., 9B:2 (1972), 351–376 | DOI | MR

[27] Dubois J.-G., Nuovo Cim., 15B:1 (1973), 1–24 | DOI | MR

[28] Roman P., Haavisto J., J. Math. Phys., 17:9 (1976), 1664 | DOI | MR

[29] Pimenov R. I., DAN SSSR, 155:1 (1964), 44–46 | MR | Zbl

[30] Gyurshi F., Teoriya grupp i elementarnye chastitsy, Sb., ed. D. Ivanenko, Mir, M., 1967 | MR

[31] Bogolyubov N. N., Logunov A. A., Todorov I. T., Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR

[32] Novozhilov Yu. V., Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR | Zbl

[33] Lévy-Leblond J.-M., Group theory and its applications, vol. 2, ed. E. M. Loebl, Academic Press, New-York–London, 1971, 221 | MR

[34] Lévy-Leblond J.-M., Ann. Inst H. Poincaré, A3:1 (1965), 1–12 | MR | Zbl

[35] Daison F. Dzh., Usp. matem. n., 35:1 (211) (1980), 171–191 | MR