Casimir operators of groups of motions of spaces of constant curvature
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 210-218

Voir la notice de l'article provenant de la source Math-Net.Ru

Limit transitions are constructed between the generators (Casimir operators) of the center of the universal covering algebra for the Lie algebras of the groups of motions of $n$-dimensional spaces of constant curvature. A method is proposed for obtaining the Casimir operators of a group of motions of an arbitrary $n$-dimensional space of constant curvature from the known Casimir operators of the group $SO(n+1)$. The method is illustrated for the example of the groups of motions of four-dimensional spaces of constant curvature, namely, the Galileo, Poincaré, Lobachevskii, de Sitter, Carroll, and other spaces.
@article{TMF_1981_49_2_a6,
     author = {N. A. Gromov},
     title = {Casimir operators of groups of motions of spaces of constant curvature},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--218},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/}
}
TY  - JOUR
AU  - N. A. Gromov
TI  - Casimir operators of groups of motions of spaces of constant curvature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 210
EP  - 218
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/
LA  - ru
ID  - TMF_1981_49_2_a6
ER  - 
%0 Journal Article
%A N. A. Gromov
%T Casimir operators of groups of motions of spaces of constant curvature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 210-218
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/
%G ru
%F TMF_1981_49_2_a6
N. A. Gromov. Casimir operators of groups of motions of spaces of constant curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 210-218. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/