Casimir operators of groups of motions of spaces of constant curvature
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 210-218
Voir la notice de l'article provenant de la source Math-Net.Ru
Limit transitions are constructed between the generators (Casimir operators) of the center of the universal covering algebra for the Lie algebras of the groups of motions of $n$-dimensional spaces of constant curvature. A method is proposed for obtaining the Casimir operators of a group of motions of an arbitrary $n$-dimensional space of constant curvature from the known Casimir operators of the group $SO(n+1)$. The method is illustrated for the example of the
groups of motions of four-dimensional spaces of constant curvature, namely, the Galileo, Poincaré, Lobachevskii, de Sitter, Carroll, and other spaces.
@article{TMF_1981_49_2_a6,
author = {N. A. Gromov},
title = {Casimir operators of groups of motions of spaces of constant curvature},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {210--218},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/}
}
N. A. Gromov. Casimir operators of groups of motions of spaces of constant curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 210-218. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a6/