Equivalence transformations for systems of equations of scalar and spinor fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 190-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the system of differential equations which describes scalar and spinor fields and is represented in the form of a system $(S)$ of first order. The differential operators (the left-hand side of the system $(S)$) are given by the Weyl operator $\sigma^i\partial_i$ and the Kemmer–Duffin operator $\beta^i\partial_i$. The interaction is introduced on the right-hand side of the system $(S)$ and depends on the scalar fields, their first derivatives, and the spinor fields. The largest Lie group of transformations of the system $(S)$ which leaves the lefthand side of the system $(S)$ invariaat is constructed explicitly. On the basis of the obtained results, a generalization is given of Dyson's theorem on the equivalence of field models containing scalar couplings and derivative couplings.
@article{TMF_1981_49_2_a4,
     author = {S. A. Vladimirov and A. v. Konarev},
     title = {Equivalence transformations for systems of equations of scalar and spinor fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--197},
     year = {1981},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a4/}
}
TY  - JOUR
AU  - S. A. Vladimirov
AU  - A. v. Konarev
TI  - Equivalence transformations for systems of equations of scalar and spinor fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 190
EP  - 197
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a4/
LA  - ru
ID  - TMF_1981_49_2_a4
ER  - 
%0 Journal Article
%A S. A. Vladimirov
%A A. v. Konarev
%T Equivalence transformations for systems of equations of scalar and spinor fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 190-197
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a4/
%G ru
%F TMF_1981_49_2_a4
S. A. Vladimirov; A. v. Konarev. Equivalence transformations for systems of equations of scalar and spinor fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 190-197. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a4/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Vladimirov S. A., Gruppy simmetrii differentsialnykh uravnenii i relyativistskie polya, Atomizdat, M., 1979 | Zbl

[3] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[4] Shveber S., Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963

[5] Berken Dzh. D., Drell S. D., Relyativistskaya kvantovaya teoriya, t. 2, Nauka, M., 1978 | MR

[6] Sokolov S. N., Shatnii A. N., TMF, 37:3 (1978), 291–304 | MR

[7] Volkov M. K., Pervushin V. N., Suschestvenno nelineinye kvantovye teorii, dinamicheskie simmetrii i fizika mezonov, Atomizdat, M., 1978

[8] Dyson F. J., Phys. Rev., 73:8 (1948), 929–930 | DOI | Zbl

[9] Case K. M., Phys. Rev., 76:1 (1949), 14–17 | DOI | MR | Zbl

[10] Noble J. V., Phys. Rev. Lett., 43:2 (1979), 100–103 | DOI