Quantization of a relativistic string
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 164-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Different approaches to the quantization of a relativistic string are compared critically. It is shown that Rohrlich's noncanonical algebras can be obtained in the framework of the method of quantization of systems with constraints developed by Dirac. A special transformation of the variables makes it possible to construct an operator realization of these algebras and show that the method of quantization using noncanonieal algebras is equivalent to the method of covariant quantization.
@article{TMF_1981_49_2_a2,
     author = {A. V. Razumov},
     title = {Quantization of a~relativistic string},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--177},
     year = {1981},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a2/}
}
TY  - JOUR
AU  - A. V. Razumov
TI  - Quantization of a relativistic string
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 164
EP  - 177
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a2/
LA  - ru
ID  - TMF_1981_49_2_a2
ER  - 
%0 Journal Article
%A A. V. Razumov
%T Quantization of a relativistic string
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 164-177
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a2/
%G ru
%F TMF_1981_49_2_a2
A. V. Razumov. Quantization of a relativistic string. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 164-177. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a2/

[1] Nambu Y., Lectures for Copenhagen Symp., 1970

[2] Rebbi C., Phys. Rep., 12C:1 (1974), 1–73 ; Mandelstam S., Phys. Rep., 13C:6 (1974), 259–353 ; Scherk J., Rev. Mod. Phys., 47:1 (1975), 123–164 | DOI | MR | DOI | DOI | MR

[3] Goddard P., Goldstone J., Rebbi C., Thorn C. B., Nucl. Phys., B56:1 (1973), 109–135 | DOI | MR

[4] Kaku M., Kikkawa K., Phys. Rev., D10:4 (1974), 1110–1133 ; Борисов Н. В., Иоффе М. В., Эйдес М. И., ЯФ, 122:3 (1975), 655–661; Cremmer E., Gervais J. L., Nucl. Phys., B90:3 (1975), 410–460 | MR | DOI | MR

[5] Rohrlich F., Phys. Rev. Lett., 34:13 (1975), 842–845 | DOI | MR

[6] Rohrlich F., Nucl. Phys., B117:1 (1976), 177–188 | DOI | MR

[7] Rohrlich F., Nuovo Cim., 37A:3 (1977), 242–265 | DOI

[8] Hanson A. J., Regge T., Teitelboim C., Constrained hamiltonian systems, Accademia Nazionale dei Lincei, Rome, 1976

[9] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1979 | MR

[10] Dirac P. A. M., Phys. Rev., 74:7 (1948), 817–830 ; Барбашов Б. М., Черников Н. А., ЖЭТФ, 50:5 (1966), 1296–1308 ; 51:2 (8), 658–668 | DOI | MR | Zbl | MR

[11] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[12] Komar A., Phys. Rev., D19:10 (1979), 2908–2912 | MR

[13] Brower R. C., Phys. Rev., D6:6 (1972), 1655–1662 | MR

[14] Ogielski A., Townsend P. K., Lett. Nuovo Cim., 25:2 (1979), 43–46 | DOI

[15] Goldstein G., Klassicheskaya mekhanika, Nauka, M., 1975 | MR | Zbl

[16] Barducci A., Casalbuoni R., Lusanna L., Lett. Nuovo Cim., 25:5 (1979), 129–132 | DOI

[17] Sudarshan E. C. G., Mukunda M., Classical dynamics: A modern perspective, John Willey, New York, 1974 | MR | Zbl

[18] Frampton P. H., Phys. Rev., D12:2 (1975), 538–545