Theory of bound states of charged particles in resonance media
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 283-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An equation which describes the interaction of two charged particles in resonance media is derived. It is shown that if the binding energy of the system differs appreciably from the characteristic frequencies of the medium then the equation of motion reduces to a Schrödinger equation with statically screened potential or unscreened potential depending on the relationship between the binding energy and the characteristic frequencies of the medium.
@article{TMF_1981_49_2_a12,
     author = {\`E. A. Manykin and M. I. Ozhovan and P. P. Polu\`ektov},
     title = {Theory of bound states of charged particles in resonance media},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {283--288},
     year = {1981},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a12/}
}
TY  - JOUR
AU  - È. A. Manykin
AU  - M. I. Ozhovan
AU  - P. P. Poluèktov
TI  - Theory of bound states of charged particles in resonance media
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 283
EP  - 288
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a12/
LA  - ru
ID  - TMF_1981_49_2_a12
ER  - 
%0 Journal Article
%A È. A. Manykin
%A M. I. Ozhovan
%A P. P. Poluèktov
%T Theory of bound states of charged particles in resonance media
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 283-288
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a12/
%G ru
%F TMF_1981_49_2_a12
È. A. Manykin; M. I. Ozhovan; P. P. Poluèktov. Theory of bound states of charged particles in resonance media. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 283-288. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a12/

[1] Fermi E., Nauch. tr. v dvukh tomakh, t. I, Nauka, M., 1971 | MR

[2] Noks R., Teoriya eksitonov, Mir, M., 1966

[3] Wang S., Matsuuva M., Phys. Rev., B10 (1974), 3330 | DOI

[4] Mahanti S. D., Varma C. M., Phys. Rev., B6 (1972), 2209 | DOI

[5] Sak J., Phys. Rev., B6 (1972), 2226 | DOI

[6] Mott N. F., Trans. Farad. Soc., 34 (1938), 500 | DOI

[7] Haken H., Schottky W., Z. Phys. Chem. (Frankf.), 20 (1958), 218 | DOI | MR

[8] Englert F., Phys. Chem. Sol., 11 (1959), 78 | DOI | MR | Zbl

[9] Gell-Mann M., Low F., Phys. Rev., 84 (1951), 350 | DOI | MR | Zbl

[10] Lifshits E. M., Pitaevskii L. P., Relyativistskaya kvantovaya teoriya, t. 2, § 122, Nauka, M., 1971 | MR | Zbl

[11] Zuev V. V., Kravchenko S. F., Manykin E. A., Fizika i tekhnika poluprovodnikov, 10 (1976), 1726

[12] Wick G. C., Phys. Rev., 96 (1954), 1124 | DOI | MR | Zbl

[13] Eliashberg G. M., ZhETF, 38:3 (1964)

[14] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, gl. VI, GIFML, M., 1962 | MR

[15] Problema vysokotemperaturnoi sverkhprovodimosti, Nauka, M., 1977

[16] Migdal A. B., Kachestvennye metody v kvantovoi teorii, Nauka, M., 1975 | MR

[17] Lee T. D., Low F. F., Pines D., Phys. Rev., 90 (1953), 297 | DOI | MR | Zbl

[18] Khaken Kh., Kvantovopolevaya teoriya tverdogo tela, Nauka, M., 1980