Jost–Lehmann–Dyson representation in the spaces $S'_\alpha$
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 147-155
Cet article a éte moissonné depuis la source Math-Net.Ru
The Jost–Lehmana–Dyson integral representation is given a new derivation that can be readily generalized to the case of the spaces $S'_\alpha$. In particular, necessary and sufficient conditions are found which ensure the existence of the Jost–Lehmann–Dyson representation for generalized functions in these spaces.
@article{TMF_1981_49_2_a0,
author = {B. I. Zavialov},
title = {Jost{\textendash}Lehmann{\textendash}Dyson representation in the spaces~$S'_\alpha$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--155},
year = {1981},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a0/}
}
B. I. Zavialov. Jost–Lehmann–Dyson representation in the spaces $S'_\alpha$. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 2, pp. 147-155. http://geodesic.mathdoc.fr/item/TMF_1981_49_2_a0/
[1] Jost R., Lehmann H., Nuovo Cim., 5:6 (1957), 1598–1610 | DOI | MR | Zbl
[2] Dyson R. G., Phys. Rev., 110:6 (1968), 1460–1464 | DOI | MR
[3] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR
[4] Bogolyubov N. N., Vladimirov V. S., Tavkhelidze A. N., TMF, 12:3 (1972), 305–330 | MR
[5] Vladimirov V. S., Zavyalov B. I., TMF, 40:2 (1979), 155–178 | MR
[6] Lazur V. Yu., Khimich I. V., Ukr. matem. zh., 29:5 (1977), 590–613 | MR
[7] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii, vyp. 2, Fizmatgiz, M., 1958 | MR
[8] Fainberg V. Ya., Soloviev M. A., Ann. Phys., 113:2 (1978), 421–447 | DOI | MR | Zbl