Covariant perturbation theory in classical electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 92-101
Voir la notice de l'article provenant de la source Math-Net.Ru
A method is found for solving self-consistent relativistic equations of motion and Maxwell's equations. It is shown that the evolution of an arbitrary dynamical variable due to the interaction of particles and fields can be represented in the form of a series. Each term of the series corresponds to quadratic combinations of Feynman diagrams calculated in the classical limit $\hbar\to0$.
@article{TMF_1981_49_1_a6,
author = {Yu. G. Pavlenko},
title = {Covariant perturbation theory in classical electrodynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {92--101},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a6/}
}
Yu. G. Pavlenko. Covariant perturbation theory in classical electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 92-101. http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a6/