Covariant perturbation theory in classical electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 92-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is found for solving self-consistent relativistic equations of motion and Maxwell's equations. It is shown that the evolution of an arbitrary dynamical variable due to the interaction of particles and fields can be represented in the form of a series. Each term of the series corresponds to quadratic combinations of Feynman diagrams calculated in the classical limit $\hbar\to0$.
@article{TMF_1981_49_1_a6,
     author = {Yu. G. Pavlenko},
     title = {Covariant perturbation theory in classical electrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {92--101},
     year = {1981},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a6/}
}
TY  - JOUR
AU  - Yu. G. Pavlenko
TI  - Covariant perturbation theory in classical electrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 92
EP  - 101
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a6/
LA  - ru
ID  - TMF_1981_49_1_a6
ER  - 
%0 Journal Article
%A Yu. G. Pavlenko
%T Covariant perturbation theory in classical electrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 92-101
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a6/
%G ru
%F TMF_1981_49_1_a6
Yu. G. Pavlenko. Covariant perturbation theory in classical electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 92-101. http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a6/

[1] Bogolyubov N. N., Izbrannye trudy, t. 2, Naukova dumka, Kiev, 1970 ; т. 3, Наукова думка, Киев, 1971 | MR

[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[3] Fok V. A., Raboty po kvantovoi teorii polya, LGU, L., 1957, s. 141

[4] Shvinger Yu., Chastitsy. Istochniki. Polya, t. 2, Mir, M., 1973

[5] Goldstein G., Klassicheskaya mekhanika, Nauka, M., 1975 | MR | Zbl

[6] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[7] Bogolyubov N. N. (ml.), Sadovnikov B. I., Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975 | MR

[8] Sokolov A. A., Ternov I. M., Relyativistskii elektron, Nauka, M., 1974

[9] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[10] Skachkov N. B., TMF, 1975, no. 3, 313–326

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl