Phase transitions in gases with generalized charges interacting through a~logarithmic law~I.~$d=2$, Isotropic case
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 77-91
Voir la notice de l'article provenant de la source Math-Net.Ru
The renormalization group method is used to consider the dependence of the critical properties of two-dimensional Coulomb gases with generalized charges on the internal symmetry. It is shown that only gases with definite discrete symmetries are renormalizable. A new method is proposed for obtaining the terms of higher order in the renormalization group equations. The nature of the singularities, the critical exponents, and the long-wavelength behavior of
the correlation functions in the low-temperature phase for various renormalizable gases are found.
@article{TMF_1981_49_1_a5,
author = {S. A. Bulgadaev},
title = {Phase transitions in gases with generalized charges interacting through a~logarithmic {law~I.~}$d=2$, {Isotropic} case},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {77--91},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a5/}
}
TY - JOUR AU - S. A. Bulgadaev TI - Phase transitions in gases with generalized charges interacting through a~logarithmic law~I.~$d=2$, Isotropic case JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 77 EP - 91 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a5/ LA - ru ID - TMF_1981_49_1_a5 ER -
%0 Journal Article %A S. A. Bulgadaev %T Phase transitions in gases with generalized charges interacting through a~logarithmic law~I.~$d=2$, Isotropic case %J Teoretičeskaâ i matematičeskaâ fizika %D 1981 %P 77-91 %V 49 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a5/ %G ru %F TMF_1981_49_1_a5
S. A. Bulgadaev. Phase transitions in gases with generalized charges interacting through a~logarithmic law~I.~$d=2$, Isotropic case. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 77-91. http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a5/