Generalized effective potential in nonlinear theories of fourth order
Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 26-35
Voir la notice de l'article provenant de la source Math-Net.Ru
Legendre transformations are used to construct a generalized effective potential $\Gamma(\varphi,G,H,S)$ which depends on the vacuum expectation value of the field, the two- and three-point connected Green's functions $G$ and $H$, and the vacuum expectation
$S=\langle0|S_{\text{cl}}|0\rangle$ of the classical action. An expansion is obtained for $\Gamma(\varphi,G,H,S)$ analogous to the loop expansion of the effective action $\Gamma(\varphi)$.
@article{TMF_1981_49_1_a1,
author = {N. S. Ananikyan and G. K. Savvidi},
title = {Generalized effective potential in nonlinear theories of fourth order},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {26--35},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a1/}
}
TY - JOUR AU - N. S. Ananikyan AU - G. K. Savvidi TI - Generalized effective potential in nonlinear theories of fourth order JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 26 EP - 35 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a1/ LA - ru ID - TMF_1981_49_1_a1 ER -
N. S. Ananikyan; G. K. Savvidi. Generalized effective potential in nonlinear theories of fourth order. Teoretičeskaâ i matematičeskaâ fizika, Tome 49 (1981) no. 1, pp. 26-35. http://geodesic.mathdoc.fr/item/TMF_1981_49_1_a1/