Quasistationary quasi-energy states and convergence of perturbation series in a monochromatic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 385-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To investigate the decay of a quantum system under the influence of an alternating external field, we develop a method of quasistationary quasi-energy states, whose complex quasi-energies and wave functions are obtained as the poles and residues of the wave functions of quasi-energy states of the continuum in the complex plane of the energy, The various forms of expression and the analytic properties of the integral equations for the quasistationary quasi-energy states are investigated. On the basis of an exact solution to a model problem and the general equations for the quasistationary quasi-energy states it is established that the perturbation series for the complex quasi-energy converge, and simple estimates are obtained for the radius of convergence.
@article{TMF_1981_48_3_a9,
     author = {N. L. Manakov and A. G. Fainshtein},
     title = {Quasistationary quasi-energy states and convergence of perturbation series in a~monochromatic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {385--395},
     year = {1981},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a9/}
}
TY  - JOUR
AU  - N. L. Manakov
AU  - A. G. Fainshtein
TI  - Quasistationary quasi-energy states and convergence of perturbation series in a monochromatic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 385
EP  - 395
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a9/
LA  - ru
ID  - TMF_1981_48_3_a9
ER  - 
%0 Journal Article
%A N. L. Manakov
%A A. G. Fainshtein
%T Quasistationary quasi-energy states and convergence of perturbation series in a monochromatic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 385-395
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a9/
%G ru
%F TMF_1981_48_3_a9
N. L. Manakov; A. G. Fainshtein. Quasistationary quasi-energy states and convergence of perturbation series in a monochromatic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 385-395. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a9/

[1] Zeldovich Ya. B., “Rasseyanie i izluchenie kvantovoi sistemoi v silnoi elektromagnitnoi volne”, UFN, 110:1 (1973), 139–151 | DOI

[2] Zeldovich Ya. B., Manakov N. L., Rapoport L. P., “Kvazienergiya sistemy, podvergayuscheisya periodicheskomu vneshnemu vozdeistviyu”, UFN, 117:3 (1975), 563–564 | DOI

[3] Manakov N. L., Preobrazhenskii M. A., Rapoport L. P., Fainshtein A. G., “Effekty vysshikh poryadkov teorii vozmuschenii dlya sdviga i shiriny atomnykh urovnei v svetovom pole”, ZhETF, 75:4 (1978), 1243–1260

[4] Rapoport L. P., Zon B. A., Manakov N. L., Teoriya mnogofotonnykh protsessov v atomakh, Atomizdat, M., 1978

[5] Manakov N. L., Fainshtein A. G., “Ionizatsiya slabosvyazannoi chastitsy i skhodimost ryadov teorii vozmuschenii v peremennom pole”, DAN SSSR, 244:3 (1979), 567–569

[6] Manakov N. L., Fainshtein A. G., “Raspad slabosvyazannogo urovnya v monokhromaticheskom pole”, ZhETF, 79:3 (1980), 751–762

[7] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[8] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[9] Manakov N. L., Rapoport L. P., Fainshtein A. G., “Kvazienergeticheskie sostoyaniya ploskogo rotatora v pole tsirkulyarno-polyarizovannoi volny”, TMF, 30:3 (1977), 395–407

[10] Ritus V. I., “Kvantovye effekty vzaimodeistviya elementarnykh chastits s intensivnym elektromagnitnym polem”, Tr. FIAN SSSR, 111 (1979), 5–151 | MR

[11] Goldberger M., Vatson K., Teoriya stolknovenii, Mir, M., 1967

[12] Ostrovskii V. N., “Mnogofotonnaya ionizatsiya, rezonansnoe rasseyanie na nestatsionarnom potentsiale i kompleksnye polyusa $S$-matritsy”, TMF, 33:1 (1977), 126–135 | MR

[13] Andryushin A. I., Kazakov A. E., Fedorov M. V., “Porogovye osobennosti vozbuzhdeniya i ionizatsii atomov intensivnym elektromagnitnym izlucheniem”, ZhETF, 76:6 (1979), 1907–1918

[14] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1977 | MR

[15] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl

[16] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR

[17] Demkov Yu. N., Drukarev G. F., “Raspad i polyarizuemost otritsatelnogo iona v elektricheskom pole”, ZhETF, 47:3 (1964), 918–924