Generalized Fokker--Planck equation for quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 373-384

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamical equation (of Fokker–Planck type) is obtained for the quantum distribution function of an arbitrary set of coarse-grain variables used to describe the evolution of a strongly fluctuating nonequilibrium system. In the general case, this equation is an integrodifferential equation, and its “nonlocality” is due not only to the contribution of small-scale fluctuations but also to the noncommutativity of the basis operators corresponding to the coarse-grain variables. The conditions under which a transition to a local approximation is possible are considered. If the basis operators form a complete set, the obtained generalized Fokker–Planck equation goes over into a “continuity equation” for the Weyl distribution function, and in this case it is equivalent to an exact Liouville equation.
@article{TMF_1981_48_3_a8,
     author = {V. G. Morozov},
     title = {Generalized {Fokker--Planck} equation for quantum systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--384},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/}
}
TY  - JOUR
AU  - V. G. Morozov
TI  - Generalized Fokker--Planck equation for quantum systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 373
EP  - 384
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/
LA  - ru
ID  - TMF_1981_48_3_a8
ER  - 
%0 Journal Article
%A V. G. Morozov
%T Generalized Fokker--Planck equation for quantum systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 373-384
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/
%G ru
%F TMF_1981_48_3_a8
V. G. Morozov. Generalized Fokker--Planck equation for quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 373-384. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/