Generalized Fokker–Planck equation for quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 373-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dynamical equation (of Fokker–Planck type) is obtained for the quantum distribution function of an arbitrary set of coarse-grain variables used to describe the evolution of a strongly fluctuating nonequilibrium system. In the general case, this equation is an integrodifferential equation, and its “nonlocality” is due not only to the contribution of small-scale fluctuations but also to the noncommutativity of the basis operators corresponding to the coarse-grain variables. The conditions under which a transition to a local approximation is possible are considered. If the basis operators form a complete set, the obtained generalized Fokker–Planck equation goes over into a “continuity equation” for the Weyl distribution function, and in this case it is equivalent to an exact Liouville equation.
@article{TMF_1981_48_3_a8,
     author = {V. G. Morozov},
     title = {Generalized {Fokker{\textendash}Planck} equation for quantum systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--384},
     year = {1981},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/}
}
TY  - JOUR
AU  - V. G. Morozov
TI  - Generalized Fokker–Planck equation for quantum systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 373
EP  - 384
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/
LA  - ru
ID  - TMF_1981_48_3_a8
ER  - 
%0 Journal Article
%A V. G. Morozov
%T Generalized Fokker–Planck equation for quantum systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 373-384
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/
%G ru
%F TMF_1981_48_3_a8
V. G. Morozov. Generalized Fokker–Planck equation for quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 373-384. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a8/

[1] Kawasaki K., “Dynamical theory of fluctuations near the critical point”, Critical phenomena, Proc. Int. School Phys. “Enrico Fermi”, Course 51, Acad. Press, N. Y.–London, 1971

[2] Mori H., Fujisaka H., Shigematsu H., Progr. Theor. Phys., 51:1 (1974), 109 | DOI

[3] Mori H., Fujisaka H., Progr. Theor. Phys., 49:3 (1973), 764 | DOI

[4] Mori H., Morita T., Mashiyama K. T., Progr. Theor. Phys., 63:6 (1980), 1865 | DOI | MR | Zbl

[5] Zwanzig R. W., Phys. Rev., 124:4 (1961), 983 | DOI | Zbl

[6] Zubarev D. N., Khazanov A. M., TMF, 34:1 (1978), 69 | MR

[7] Weidlich W., Haake F., Z. Physik, 185:1 (1965), 30 | DOI | Zbl

[8] Glauber R. J., Phys. Rev., 131:6 (1963), 2766 | DOI | MR

[9] Haken H., Z. Physik, 219:5 (1969), 411 | DOI | Zbl

[10] Weyl H., Gruppentheorie und Quantenmechanik, Leipzig, 1931 | MR

[11] Balescu R., Equilibrium and nonequilibrium statistical mechanics, v. 1, John Wiley and Sons, N. Y.–London–Sydney–Toronto, 1975 | MR

[12] Zubarev D. N., TMF, 3:2 (1970), 276 | MR

[13] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[14] Kawasaki K., Ann. Phys., 61:1 (1970), 1 | DOI

[15] Berezin F. A., Commun. Math. Phys., 40:2 (1975), 153 | DOI | MR | Zbl

[16] Kawasaki K., Gunton J. D., Phys. Rev., B13:1 (1976), 4658 | DOI

[17] Hohenberg P. C., Halperin B. I., Rev. Mod. Phys., 49:3 (1977), 435 | DOI