Global structure of the general solution of the Chew--Low equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 346-355

Voir la notice de l'article provenant de la source Math-Net.Ru

The Chew–Low equations for static $p$-wave $\pi N$ scattering are considered. The formulation of these equations in the form of a system of three nonlinear first-order difference equations is used, the general solution of the equations depending on three arbitrary periodic functions. An approach is proposed for the global construction of the general solution; it is based on an expansion in powers of one of the arbitrary functions $C(w)$, which determines the structure of the invariant curve of the Chew–Low equations. It is shown that in each order in $C(w)$ the original nonlinear problem reduces to a linear problem. By solution of the latter, the general solution of the Chew–Low equations is found up to terms quadratic in $C(w)$.
@article{TMF_1981_48_3_a6,
     author = {V. P. Gerdt},
     title = {Global structure of the general solution of the {Chew--Low} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {346--355},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a6/}
}
TY  - JOUR
AU  - V. P. Gerdt
TI  - Global structure of the general solution of the Chew--Low equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 346
EP  - 355
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a6/
LA  - ru
ID  - TMF_1981_48_3_a6
ER  - 
%0 Journal Article
%A V. P. Gerdt
%T Global structure of the general solution of the Chew--Low equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 346-355
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a6/
%G ru
%F TMF_1981_48_3_a6
V. P. Gerdt. Global structure of the general solution of the Chew--Low equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 346-355. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a6/