Classical particle with spin and Clifford algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 340-345
Cet article a éte moissonné depuis la source Math-Net.Ru
The equations of motion of a classical particle with spin in an electromagnetic field are derivated in the language of the Clifford algebra of Minkowski space constructed by Hestenes [1]. When the Clifford algebra is used, these equations, their derivation, and solution simplify considerably, and the equations acquire a clear geometrical meaning. A perturbation theory for these equations is developed, and this permits calculations of the motion and polarization of particles in various electromagnetic fields.
@article{TMF_1981_48_3_a5,
author = {A. L. Glebov},
title = {Classical particle with spin and {Clifford} algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {340--345},
year = {1981},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a5/}
}
A. L. Glebov. Classical particle with spin and Clifford algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 340-345. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a5/
[1] Hestenes D., Space-time algebra, N.Y., 1966 | MR
[2] Bagrov V. G., Bordovitsyn V. A., Izv. vuzov, fizika, 1980, no. 2, 67
[3] Kazanova G., Vektornaya algebra, Mir, M., 1979 | MR
[4] Bargman V., Michel L., Telegdi V., Phys. Rev. Lett., 2 (1959), 435 | DOI
[5] Tamm I. E., Sobranie nauchnykh trudov, t. 2, Nauka, M., 1975, 5
[6] Good R. H., Phys. Rev., 125 (1962), 2112 | DOI | MR | Zbl
[7] Frenkel J. I., Z. Phys., 37 (1926), 243 | DOI | Zbl
[8] Nyborg P., Nuovo Cim., 31 (1962), 1209 | DOI