Infrared asymptotics of power type for the gluon propagator in the axial gauge
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 324-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a gauge theory of Yang–Mills type with zero mass, a study is made of the possibility of having a power-law infrared asymptotic behavior of the total gtuon propagator: $D(k)\sim1/(k^2)^{\beta+1}$, $k^2\to0$. The axial gauge is used, and an equation for the exponent of the infrared asymptotic behavior is obtained as a consequence of the Schwinger–Dyson equation and the Ward–Slavnov identity; dimensional regularization is used. Under certain assumptions, it is shown that there exists a spectrum of discrete values of the exponent of the infrared behavior that are asymptotically consistent in the limit $k^2\to0$ with the Sehwiager–Dyson equation and the Ward–Slavnov identity. The values of the exponent are found by numerical analysis.
@article{TMF_1981_48_3_a4,
     author = {A. I. Alekseev},
     title = {Infrared asymptotics of power type for the gluon propagator in the axial gauge},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {324--339},
     year = {1981},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a4/}
}
TY  - JOUR
AU  - A. I. Alekseev
TI  - Infrared asymptotics of power type for the gluon propagator in the axial gauge
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 324
EP  - 339
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a4/
LA  - ru
ID  - TMF_1981_48_3_a4
ER  - 
%0 Journal Article
%A A. I. Alekseev
%T Infrared asymptotics of power type for the gluon propagator in the axial gauge
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 324-339
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a4/
%G ru
%F TMF_1981_48_3_a4
A. I. Alekseev. Infrared asymptotics of power type for the gluon propagator in the axial gauge. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 324-339. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a4/

[1] Ball J. S., Zachariasen F., Nucl. Phys., B143:1 (1978), 148 | DOI

[2] Zachariasen F., The infrared behaviour of the running coupling constant in Yang-Mills theories, Preprint TH. 2601-CERN, CERN, Geneva, 1978 | MR

[3] Alekseev A. I., YaF, 33:2 (1981), 516

[4] Anishetty R., Baker M., Kim S. K., Ball J. S., Zachariasen F., Phys. Lett., B86:1 (1979), 52 | DOI | MR

[5] Baker M., Ball J. S., Lucht P., Zachariasen F., Phys. Lett., B89:2 (1980), 211 | DOI

[6] Bar-Gadda U., Nucl. Phys., B163:3 (1980), 312 | DOI

[7] Mandelstam S., Phys. Rev., D20:12 (1979), 3223

[8] Delborgo R., The gluon propagator, Preprint Univ. of Tasmania, Hobart, Tasmania, 1978

[9] Slater L. J., Generalized hypergeometric functions, Cambridge, 1966 | MR

[10] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973 | MR

[11] Spravochnik po spetsialnym funktsiyam, eds. Abramovits M., Stigan I., Nauka, M., 1979 | MR

[12] Frenkel J., Meuldermans R., Phys. Lett., B65:1 (1976), 64 | DOI