Statistical theory of crystallization in a system of hard spheres
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 416-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The reasons for the contradictions between the results of different studies devoted to crystallization in terms of bifurcation of the solutions of nonlinear integral equations for the single-particle distribution function are elucidated. It is shown to be impossible to describe crystallization in a system of hard spheres in the framework of the standard approach based on an investigation into the instability of a liquid with respect to a continuous change in the density. An alternative formulation of the theory is proposed in which the fundamental role is played by the finite discontinuity of the density at the point of the transition from the liquid to the solid phase.
@article{TMF_1981_48_3_a12,
     author = {V. N. Ryzhov and E. E. Tareeva},
     title = {Statistical theory of crystallization in a~system of hard spheres},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {416--423},
     year = {1981},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a12/}
}
TY  - JOUR
AU  - V. N. Ryzhov
AU  - E. E. Tareeva
TI  - Statistical theory of crystallization in a system of hard spheres
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 416
EP  - 423
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a12/
LA  - ru
ID  - TMF_1981_48_3_a12
ER  - 
%0 Journal Article
%A V. N. Ryzhov
%A E. E. Tareeva
%T Statistical theory of crystallization in a system of hard spheres
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 416-423
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a12/
%G ru
%F TMF_1981_48_3_a12
V. N. Ryzhov; E. E. Tareeva. Statistical theory of crystallization in a system of hard spheres. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 3, pp. 416-423. http://geodesic.mathdoc.fr/item/TMF_1981_48_3_a12/

[1] Bogolyubov N. N., Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint R-1451, OIYaI, Dubna, 1963

[2] Kirkwood J. G., Monroe E., J. Chem. Phys., 9:2 (1941), 514 | DOI | MR

[3] Tyablikov S. V., ZhETF, 17:5 (1947), 386

[4] Vlasov A. A., Teoriya mnogikh chastits, Gostekhizdat, M., 1950

[5] Raveché H. J., Stuart C. A., J. Chem. Phys., 63:3 (1975), 1099 ; 65:6 (1976), 2305 ; J. Math. Phys., 17:11 (1976), 1949 | DOI | DOI | DOI | MR

[6] Raveché H. J., Kayser R. F., Jr., J. Chem. Phys., 68:8 (1978), 3632 | DOI | MR

[7] Yoshida T., Kudo H., Progr. Theor. Phys., 59:2 (1978), 393 | DOI

[8] Lovett R., J. Chem. Phys., 66:3 (1977), 1225 | DOI

[9] Weeks J. D., Rice S. A., Kozak J. J., J. Chem. Phys., 52:5 (1970), 2416 | DOI | MR

[10] Tareeva E. E., TMF, 21:3 (1974), 343 | MR | Zbl

[11] Kozak J. J., Adv. Chem. Phys., 40 (1979), 229 | DOI

[12] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[13] Hoover W. G., Ree F. H., J. Chem. Phys., 49:8 (1968), 3609 | DOI

[14] Percus J. K., The equilibrium theory of classical fluids, Benjamin, N.-Y., 1964

[15] Lovett R., Mou C. Y., Buff F. P., J. Chem. Phys., 65:2 (1976), 570 | DOI

[16] Arinshtein E. A., DAN SSSR, 112:4 (1957), 615 | MR | Zbl

[17] Stillinger F. H. Jr., Buff F. P., Phys. Rev., 37:1 (1962), 1 | MR

[18] Wertheim M. S., Phys. Rev. Lett., 10:8 (1963), 321 ; J. Math. Phys., 5:4 (1964), 643 ; Thiele E., Phys. Rev., 39:2 (1963), 474 | DOI | MR | Zbl | DOI | MR | Zbl