Hierarchy of BBGKY equations for one-dimensional systems of particles with hard core
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 236-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classical lattice system is defined as a system consisting of a large number of classical subsystems (lattice sites) that, depending on the position on the lattice, can interact in some manner with each other. A hierarchy of BBGKY equations is obtained for describing the evolution of the probability densities (normalized to unity) which determine the state of the classical lattice system. A one-dimensional system of classical particles interacting through a finite-range potential with hard core is interpreted as a classical lattice system. A formula is found for solving the BBGKY equations for such a system. A mathematical structure in which this formula has mathematical significance is found. To the states of the system there correspond countably additive measures on the phase space of an infinite number of particles.
@article{TMF_1981_48_2_a9,
     author = {A. K. Vidybida},
     title = {Hierarchy {of~BBGKY} equations for one-dimensional systems of particles with hard core},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {236--249},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a9/}
}
TY  - JOUR
AU  - A. K. Vidybida
TI  - Hierarchy of BBGKY equations for one-dimensional systems of particles with hard core
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 236
EP  - 249
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a9/
LA  - ru
ID  - TMF_1981_48_2_a9
ER  - 
%0 Journal Article
%A A. K. Vidybida
%T Hierarchy of BBGKY equations for one-dimensional systems of particles with hard core
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 236-249
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a9/
%G ru
%F TMF_1981_48_2_a9
A. K. Vidybida. Hierarchy of BBGKY equations for one-dimensional systems of particles with hard core. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 236-249. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a9/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, OGIZ, M.–L., 1946 | MR

[2] Gallavotti G., Lanford O. E., Lebovitz J. L., “Thermodynamic limit of time-dependent correlation functions for one-dimensional systems”, J. Math. Phys., 11:9 (1970), 2898–2905 | DOI | MR

[3] Gurevich B. M., Suchov Yu. M., “Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics”, Commun. Math. Phys., 49:1 (1979), 63–75 | DOI | MR

[4] Sukhov Yu. M., “Silnoe reshenie tsepochki uravnenii Bogolyubova v odnomernoi statisticheskoi mekhanike”, DAN SSSR, 244:5 (1979), 1081–1085 | MR

[5] Petrina D. Ya., “O resheniyakh kineticheskikh uravnenii Bogolyubova. Kvantovaya statistika”, TMF, 13:3 (1972), 391–405 | MR

[6] Petrina D. Ya., Vidybida A. K., “Zadacha Koshi dlya tsepochki uravnenii Bogolyubova”, Tr. MIAN SSSR, 136, 1975, 370–378 ; Видыбида А. К., Петрина Д. Я., ДАН СССР, 228 (1976), 573 | MR | MR | Zbl

[7] Vidybida A. K., “Termodinamicheskii predel po teorii vozmuschenii dlya reshenii kineticheskikh uravnenii Bogolyubova”, DAN USSR, ser. «A», 1975, no. 6, 542–545 | MR

[8] Petrina D. Ya., “Matematicheskoe opisanie evolyutsii beskonechnykh sistem klassicheskoi statisticheskoi mekhaniki. I: Lokalno vozmuschennye odnomernye sistemy”, TMF, 38:2 (1979), 230–250 | MR

[9] Malyshev P. V., Mathematical description of the evolution of an infinite classical system, Preprint ITP-79-37E, ITP, Kiev, 1979, 21 pp. | MR

[10] Vidybida A. K., “Zadacha Koshi dlya tsepochki uravnenii Bogolyubova. Odnomernye kvantovye reshetchatye sistemy”, TMF, 39:3 (1979), 353–358 | MR

[11] Gerasimenko V. I., Petrina D. Ya., “Statisticheskaya mekhanika kvantovo-klassicheskikh sistem, neravnovesnye sistemy”, TMF, 42 (1980), 88 | MR

[12] Lanford O. E., Lebovitz J. L., Lieb E. H., “Time evolution of infinite anharmonic systems”, J. Stat. Phys., 16:6 (1977), 453–461 | DOI | MR

[13] Mnogokomponentnye sluchainye sistemy, Nauka, M., 1978, 324 pp. | MR

[14] Toda M., “Studies of a non-linear lattice”, Phys. Reports, 18C:1 (1975), 1–124 | DOI | MR

[15] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI NKTP SSSR, L., 1936, 80 pp. | MR

[16] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp. | MR

[17] Banakh S. S., Kurs funktsionalnogo analizy, Radyanska shkola, Kiiv, 1948, 216 pp.

[18] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl