Covariant generalization of Noether's theorems for fields with spin $1/2$
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 227-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spinor and spin-tensor total variations are defined for spinor fields in Riemannian spacetime and make it possible to formulate the corresponding Noether theorems in eovariant form. The invarianee of spinor field equations with respect to the transformations of the symmetry group of Riemannian space-time is proved in eovariant form, and corresponding differential conservation laws are derived.
@article{TMF_1981_48_2_a8,
     author = {B. A. Levitskii and Yu. A. Yappa},
     title = {Covariant generalization of {Noether's} theorems for fields with spin~$1/2$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {227--235},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a8/}
}
TY  - JOUR
AU  - B. A. Levitskii
AU  - Yu. A. Yappa
TI  - Covariant generalization of Noether's theorems for fields with spin $1/2$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 227
EP  - 235
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a8/
LA  - ru
ID  - TMF_1981_48_2_a8
ER  - 
%0 Journal Article
%A B. A. Levitskii
%A Yu. A. Yappa
%T Covariant generalization of Noether's theorems for fields with spin $1/2$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 227-235
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a8/
%G ru
%F TMF_1981_48_2_a8
B. A. Levitskii; Yu. A. Yappa. Covariant generalization of Noether's theorems for fields with spin $1/2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 227-235. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a8/

[1] Noether E., “Invariante variationsprobleme”, Nachr. v. d. Könogl. Gesellsch. d. Wissensch. zu Göttingen, Math.-Phys. K1, 2 (1918), 235–258

[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[3] Konopleva N. P., Popov V. N., Kalibrovochnye polya, Atomizdat, M., 1972 | MR

[4] Plybon B. F., “New approach to the Noether theorems”, J. Math. Phys., 12 (1971), 57–60 | DOI | MR | Zbl

[5] Fock V., Ivanenko D., “Géometrie quantique lenéaire et deplacement paralléle”, Compt. Rend. (Paris), 188 (1929), 1470–1472 | Zbl

[6] Fok V., “Volnovoe uravnenie Diraka i geometriya Rimana”, ZhRFKhO, chast fiz., 62:2 (1930), 133–152

[7] Lichnerowicz A., “Champ de Dirac, champ du neutrino et transformations $C$, $P$, $T$ sur un espace-temps courve”, Ann Inst. Henri Poincaré, 1A (1964), 233–290 | MR

[8] Chernikov N. A., Shavokhina N. S., “Kvantovanie spinornogo polya v sfericheskom mire”, TMF, 16:1 (1973), 77–89 | MR

[9] Rodichev V. I., Teoriya tyagoteniya v ortogonalnom repere, Nauka, M., 1974 | MR

[10] Stepanov V. E., Yappa Yu. A., “Proizvodnaya Li geometricheskikh ob'ektov”, Vestn. LGU, fiz.-khim., v. 4, 1978, no. 22, 42–46 | MR

[11] Chernikov N. A., Tagirov E. A., “Quantum theory of scalar field in de Sitter spacetime”, Ann. Inst. Henri Poincaré, 9A (1968), 109–141 | MR | Zbl

[12] Levitskii B. A., “Simmetrizatsiya tenzora energii-impulsa spinornogo polya v rimanovom prostranstve-vremeni”, Izv. Vuzov SSSR, fizika, 1977, no. 7, 152–153 | MR