Weak interactions and dispersion relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 216-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of including weak interactions in the Bogolyubov–Medvedev–Polivanov axiomatie approach is studied and one-dimensional dispersion relations are proved for elastic $\nu e$ scattering. The problem of deriving dispersion relations for weak interactions is considered in the framework of localizable axiomatic quantum theory, which was formulated earlier by the authors. In it, one permits a growth of the matrix elements in the momentum space off the mass shell which is slower than an arbitrary linear exponential, and it contains the ordinary axiomatie quantum theory of tempered growth as a special case.
@article{TMF_1981_48_2_a7,
     author = {V. I. Lazur and I. V. Khimich},
     title = {Weak interactions and dispersion relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {216--226},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a7/}
}
TY  - JOUR
AU  - V. I. Lazur
AU  - I. V. Khimich
TI  - Weak interactions and dispersion relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 216
EP  - 226
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a7/
LA  - ru
ID  - TMF_1981_48_2_a7
ER  - 
%0 Journal Article
%A V. I. Lazur
%A I. V. Khimich
%T Weak interactions and dispersion relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 216-226
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a7/
%G ru
%F TMF_1981_48_2_a7
V. I. Lazur; I. V. Khimich. Weak interactions and dispersion relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 216-226. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a7/

[1] Bogolyubov N. N., Medvedev B. V., Polivanov M. K., Voprosy teorii dispersionnykh sootnoshenii, GIFML, M., 1958, 202 pp. | MR

[2] Pomeranchuk I. Ya., “Ogranicheniya na skorost rosta sechenii slabykh vzaimodeistvii”, YaF, 11:4 (1970), 852–958

[3] Dolgov A. D., Zakharov V. I., Okun L. B., “Slabye vzaimodeistviya na vstrechnykh leptonnykh puchkakh v oblasti $10^2$–$10^3$ GeV”, YaF, 14 (1971), 1044–1055

[4] Dolgov A. D., Zakharov V. I., Okun L. B., “O chlenakh poryadka $(GS)^3$ v amplitudakh slabykh leptonnykh protsessov”, YaF, 14:6 (1971), 1247–1259

[5] Vernov Yu. S., “Analitichnost i svoistva amplitud uprugogo $\nu e$- i $\widetilde{\nu e}$-rasseyaniya pri vysokikh energiyakh”, TMF, 16:3 (1973), 423–426 | MR

[6] Logunov A. A., Mestvirishvili M. A., Rcheulishvili G. L., Samokhin A. P., “Mozhet li slaboe vzaimodeistvie stat silnym?”, TMF, 36:2 (1978), 147–157

[7] Lazur V. Yu., Khimich I. V., “Funktsionalnaya formulirovka aksiomaticheskoi skhemy Bogolyubova-Medvedeva-Polivanova dlya lokalizuemykh teorii polya”, UFZh, 21:8 (1976), 1271–1280 | MR

[8] Kirzhnits D. A., Lifshits M. A., “Konechnye resheniya v teorii neperenormiruemykh vzaimodeistvii”, ZhETF, 52:3 (1967), 804–813

[9] Lifshits M. A., “Ob opisanii slabogo vzaimodeistviya leptonov vne ramok teorii vozmuschenii”, YaF, 8:6 (1968), 1245–1252 | MR

[10] Güttinger W., “Generalized functions and dispersion relations in physics”, Fortschr. der Phys., 14 (1966), 483–602 | DOI | MR | Zbl

[11] Lazur V. Yu., Khimich I. V., “Dokazatelstvo integralnogo predstavleniya Iosta-Lemana-Daisona dlya prichinnogo kommutatora v ramkakh lokalizuemykh teorii”, UMZh, 29:5 (1977), 599–613 | MR | Zbl

[12] Bogolyubov N. N., Bilenkii S. M., Logunov A. A., “Dispersionnye sootnosheniya v sluchayakh slabogo vzaimodeistviya”, DAN SSSR, 115:5 (1957), 891–893

[13] Bogolubov N. N., Bilenky S. M., Logunov A. A., “Dispersion relations for weak interactions”, Nucl. Phys., 5 (1957), 383–389 | DOI

[14] Bilenkii S. M., Dispersionnye sootnosheniya protsessov so slabym vzaimodeistviem, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, OIYaI, Dubna, 1958

[15] Gelfand I. M., Shilov G. E., Obobschennye funktsii, t. 2, Fizmatgiz, M., 1958, 307 pp. | MR

[16] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, M., 1962, 200 pp. | MR

[17] Lazur V. Yu., Khimich I. V., “K probleme dokazatelstva dispersionnykh sootnoshenii v ramkakh lokalizuemykh teorii polya”, UFZh, 22:7 (1977), 1057–1061 | MR

[18] Solovev M. A., Fainberg V. Ya., “Sovremennoe sostoyanie aksiomaticheskoi kvantovoi teorii polya nepolinomialnogo rosta”, Nelokalnye, nelineinye i neperenormiruemye teorii polya, Materialy IV Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya, OIYaI, Dubna, 1976, 57– 76 | MR

[19] Solovev M. A., “O vybore klassa obobschennykh funktsii, sovmestimom s lokalnostyu”, TMF, 7:2 (1971), 183–196 ; “Локальность и теория структур”, ТМФ, 20 (1974), 299–301 | MR | Zbl

[20] Jaffe A. M., “High-energy behaviour in quantum field theory. I: Structly localizable fields”, Phys. Rev., 158 (1967), 1454–1461 | DOI

[21] Solovev M. A., “O preobrazovanii Fure-Laplasa obobschennykh funktsii”, TMF, 15 (1973), 3–19 | MR | Zbl

[22] Lazur V. Yu., Khimich I. V., “Dispersionnye sootnosheniya dlya rasseyaniya pionov na nuklonakh v ramkakh lokalizuemykh teorii polya”, UFZh, 21:7 (1976), 1061–1070 | MR

[23] Lazur V. Yu., Khimich I. V., “Analitichnost i povedenie amplitudy rasseyaniya pri vysokikh energiyakh v lokalizuemoi kvantovoi teorii polya”, UFZh, 22:7 (1977), 1062–1069 | MR

[24] Lazur V. Yu., Khimich I. V., “Dispersionnye sootnosheniya s dvumya vychitaniyami v ramkakh lokalizuemykh teorii polya”, UFZh, 23:3 (1978), 353–360