Two-particle equations for fermions in models with trilinear interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 187-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-particle equations for a spinor field (the Edwards and Bethe–Salpeter equations) are obtained as a consequence of the Sehwinger equations by the method of the second Legendre transformation. For a theory with trilinear interaction which is local in the fermions, a relation between the kernel of the two-particle equations and the propagator is obtained and its consequences considered.
@article{TMF_1981_48_2_a4,
     author = {M. L. Nekrasov and V. E. Rochev},
     title = {Two-particle equations for fermions in models with trilinear interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {187--196},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a4/}
}
TY  - JOUR
AU  - M. L. Nekrasov
AU  - V. E. Rochev
TI  - Two-particle equations for fermions in models with trilinear interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 187
EP  - 196
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a4/
LA  - ru
ID  - TMF_1981_48_2_a4
ER  - 
%0 Journal Article
%A M. L. Nekrasov
%A V. E. Rochev
%T Two-particle equations for fermions in models with trilinear interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 187-196
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a4/
%G ru
%F TMF_1981_48_2_a4
M. L. Nekrasov; V. E. Rochev. Two-particle equations for fermions in models with trilinear interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 187-196. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a4/

[1] Nishijima K., Fields and Particles, W. A. Benjamin, N. Y., 1969

[2] Nakanishi N., “A general survey of the theory of the Bethe-Salpeter equation”, Suppl. Progr. Theor. Phys., 1969, no. 43, 1–81 | DOI | MR | Zbl

[3] Rochev V. E., Preobrazovaniya Lezhandra i uravneniya dlya funktsii Grina, Preprint 80-8, IFVE OTF, Serpukhov, 1980

[4] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[5] Efimov G. V., Nelokalnye vzaimodeistviya kvantovannykh polei, Nauka, M., 1979 | MR | Zbl

[6] Johnson K., Baker M., Willey R., “Self-energy of the electron”, Phys. Rev., 136:4B (1964), 1111–1119 ; Johnson K., Baker M., “Some speculations on high-energy quantum electrodynamics”, Phys. Rev., D8:4, 1110–1122 | DOI | MR

[7] Dragovich B. G., Mavlo D. P., Filippov A. T., Issledovanie reshenii uravnenii Daisona-Shvingera dlya elektronnogo propagatora v kvantovoi elektrodinamike, Preprint R2-10344, OIYaI, Dubna, 1976

[8] Alekseev A. I., Arbuzov B. A., Rodionov A. Ya., “O vozmozhnosti dinamicheskogo vozniknoveniya massy v konechnoi kvantovoi elektrodinamike”, TMF, 42:3 (1980), 291–305 | MR

[9] Böhm M., Bethe-Salpeter equation and current conservation, Preprint TH. 1878-CERN, CERN, Geneva, 1974

[10] Lurie D., Macfarlane A. J., Takahashi Y., “Normalization of the Bethe-Salpeter wave functions”, Phys. Rev., 140:4B (1965), 1091–1099 | DOI | MR

[11] Huang K., Weldon H. A., “Bound-state wave function and bound-state scattering in relativistic field theory”, Phys. Rev., D11:2 (1975), 257–278