Absence of anomalous counterterms in the first order in the coupling constant of the first variational derivative of the quantum expectation value of the $P$ exponential
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 168-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multiplicative renormalizability of the first variational derivative of the quantum expectation value of the $P$ exponential is proved in the first nonvanishing order of perturbation theory in the coupling constant.
@article{TMF_1981_48_2_a2,
     author = {A. G. Chernikov},
     title = {Absence of anomalous counterterms in the first order in the coupling constant of the first variational derivative of the quantum expectation value of the $P$~exponential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {168--179},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a2/}
}
TY  - JOUR
AU  - A. G. Chernikov
TI  - Absence of anomalous counterterms in the first order in the coupling constant of the first variational derivative of the quantum expectation value of the $P$ exponential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 168
EP  - 179
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a2/
LA  - ru
ID  - TMF_1981_48_2_a2
ER  - 
%0 Journal Article
%A A. G. Chernikov
%T Absence of anomalous counterterms in the first order in the coupling constant of the first variational derivative of the quantum expectation value of the $P$ exponential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 168-179
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a2/
%G ru
%F TMF_1981_48_2_a2
A. G. Chernikov. Absence of anomalous counterterms in the first order in the coupling constant of the first variational derivative of the quantum expectation value of the $P$ exponential. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 168-179. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a2/

[1] Wilson K. G., “Confinement of quarks”, Phys. Rev., 10D:8 (1974), 2445–2459

[2] Nambu Y., “Strings, monopoles and guage fields”, Phys. Rev., 10D:12 (1974), 4262–4268 | MR

[3] Foerster D., “On quantised strings describing the infrared behaviour of chromodynamics”, Nucl. Phys., B119:1 (1977), 141–156 | DOI | MR

[4] Polyakov A. M., “String representation and hidden symmetries for gauge fields”, Phys. Lett., 82B:2 (1979), 247–250 | DOI | MR

[5] Polyakov A. M., “Gauge fields as rings of glue”, Nucl. Phys., B164:1 (1979), 171–188 | MR

[6] Aref'eva I. Ya., “The gauge field as chiral field on the path and its integrability”, Lett. in Math. Phys., 3 (1979), 241–247 | DOI | MR

[7] Aref'eva I. Ya., “Quantum contour field equations”, Phys. Lett., 93B:3 (1980), 347–356 | DOI | MR

[8] Makeenko Yu. M., Migdal A. A., “Exact equation for the loop average in multicolor QCD”, Phys. Lett., 88B:1, 2 (1979), 135–137 | DOI | MR

[9] Makeenko Yu. M., Migdal A. A., “Kvantovaya khromodinamika kak dinamika petel”, YaF, 32:3 (9) (1980), 838–854

[10] Lüscher M., Symanzik K., Weisz P., DESY preprint 80/31, Hamburg, 1980 | MR

[11] Creutz M., “Confinement and the critical dimensionality of space-time”, Phys. Rev. Lett., 43:8 (1979), 553–556 ; Creutz M., “Monte Carlo study of quantized $SU(2)$ gauga theory”, Phys. Rev., 21D:8 (1980), 2308–2315 | DOI | MR | MR

[12] Arefeva I. Ya., “Ob ustranenii raskhodimostei v integralnoi formulirovke teorii Yanga-Millsa”, Pisma ZhETF, 31:7 (1980), 421–425

[13] Sámuel S., “Color Zitterbewegung”, Nucl. Phys., B149:3 (1979), 517–524 | DOI

[14] Gervais J. L., Neveu A., “The slope of the leading Regge trajectory in quantum chromodynamics”, Nucl. Phys., B163:3 (1980), 189–216 ; preprint LPTENS, 79(14), 1979 | DOI | MR

[15] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR