A theorem about states on quantum logics. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 261-265
Cet article a éte moissonné depuis la source Math-Net.Ru
All states on the logic of projection operators of a hyperfinite type III factor are described. The proposed method reduces the problem of describing states on type III factors to the description of bounded states.
@article{TMF_1981_48_2_a11,
author = {M. S. Matveichuk},
title = {A~theorem about states on quantum {logics.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {261--265},
year = {1981},
volume = {48},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a11/}
}
M. S. Matveichuk. A theorem about states on quantum logics. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a11/
[1] Birkhoff G., von Neumann J., “The logic of quantum mechanics”, Ann. Math., 37 (1936), 823–843 | DOI | MR | Zbl
[2] Makki D., Lektsii po matematicheskim osnovam kvantovoi mekhaniki, Mir, M., 1965 | MR
[3] Gleason A. M., “Measures on the closed subspaces of a Hilbert space”, J. Math. Mech., 6:6 (1957), 885–893 | MR | Zbl
[4] Matveichuk M. S., “Odna teorema o sostoyaniyakh na kvantovykh logikakh”, TMF, 45:2 (1980), 244–250 | MR
[5] Gunson J., “Physical states on quantum logics, I”, Ann Inst. Henri Poincare, XVII:4 (1972), 295–311 | MR