A theorem about states on quantum logics. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 261-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All states on the logic of projection operators of a hyperfinite type III factor are described. The proposed method reduces the problem of describing states on type III factors to the description of bounded states.
@article{TMF_1981_48_2_a11,
     author = {M. S. Matveichuk},
     title = {A~theorem about states on quantum {logics.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--265},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a11/}
}
TY  - JOUR
AU  - M. S. Matveichuk
TI  - A theorem about states on quantum logics. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 261
EP  - 265
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a11/
LA  - ru
ID  - TMF_1981_48_2_a11
ER  - 
%0 Journal Article
%A M. S. Matveichuk
%T A theorem about states on quantum logics. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 261-265
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a11/
%G ru
%F TMF_1981_48_2_a11
M. S. Matveichuk. A theorem about states on quantum logics. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a11/

[1] Birkhoff G., von Neumann J., “The logic of quantum mechanics”, Ann. Math., 37 (1936), 823–843 | DOI | MR | Zbl

[2] Makki D., Lektsii po matematicheskim osnovam kvantovoi mekhaniki, Mir, M., 1965 | MR

[3] Gleason A. M., “Measures on the closed subspaces of a Hilbert space”, J. Math. Mech., 6:6 (1957), 885–893 | MR | Zbl

[4] Matveichuk M. S., “Odna teorema o sostoyaniyakh na kvantovykh logikakh”, TMF, 45:2 (1980), 244–250 | MR

[5] Gunson J., “Physical states on quantum logics, I”, Ann Inst. Henri Poincare, XVII:4 (1972), 295–311 | MR