Cluster effects in multicomponent alloys
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 250-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new representation is proposed for the Green's function of a disordered multicomponent substitutional alloy. By means of this representation the $1$-, $2$-, etc., lattice contributions to the Green's function can be readily separated in the corresponding equations. Using the representation, it is possible to obtain general expressions for the configuration-averaged Green's function with allowance for electron scattering by clusters of an arbitrary number of atoms. The calculations are made in a fairly general model of a substitutional alloy. Equations are also found for the vertex paths, and the conditions are investigated under which the approximate expressions for the Green's functions and the vertices satisfy the Ward identity.
@article{TMF_1981_48_2_a10,
     author = {Yu. M. Ivanchenko and A. I. Kozinskaya and A. A. Lisyanskii},
     title = {Cluster effects in multicomponent alloys},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--260},
     year = {1981},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a10/}
}
TY  - JOUR
AU  - Yu. M. Ivanchenko
AU  - A. I. Kozinskaya
AU  - A. A. Lisyanskii
TI  - Cluster effects in multicomponent alloys
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 250
EP  - 260
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a10/
LA  - ru
ID  - TMF_1981_48_2_a10
ER  - 
%0 Journal Article
%A Yu. M. Ivanchenko
%A A. I. Kozinskaya
%A A. A. Lisyanskii
%T Cluster effects in multicomponent alloys
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 250-260
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a10/
%G ru
%F TMF_1981_48_2_a10
Yu. M. Ivanchenko; A. I. Kozinskaya; A. A. Lisyanskii. Cluster effects in multicomponent alloys. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 2, pp. 250-260. http://geodesic.mathdoc.fr/item/TMF_1981_48_2_a10/

[1] Lifshits I. M., “O strukture energeticheskogo spektra i kvantovykh sostoyaniyakh neuporyadochennykh kondensirovannykh sistem”, UFN, 83:4 (1964), 617–663 | DOI | Zbl

[2] Elliot R., Kramkhansl Dzh., Lis P., “Teoriya i svoistva sluchaino neuporyadochennykh kristallov i svyazannykh s nimi fizicheskikh sistem”, Teoriya i svoistva neuporyadochennykh materialov, Mir, M., 1977, 11–248

[3] Erenreikh G., Shvarts L., Elektronnaya struktura splavov, Mir, M., 1979, 200 pp.

[4] Soven P., “Coherent-potential model of substitutional disordered alloys”, Phys. Rev., 156:3 (1967), 809–813 | DOI

[5] Yonezawa F., Morigaki K., “Coherent potential approximation”, Progr. Theor Phys. Suppl., 1973, no. 53, 1–76 | DOI

[6] Ducastelle F., “On some generalization of the coherent potential approximation in disordered alloy problem”, J. Phys. F, 2:5 (1972), 468–486 | DOI

[7] Ivanchenko Yu. M., Lisyanskii A. A., “Problema usredneniya funktsii Grina neuporyadochennogo kristalla”, II seminar po amorfnomu magnetizmu, Tezisy dokladov, Krasnoyarsk, 1980, 121–122; “On averaging of the Green function of disordered alloys”, Physica, A, 1981 (to appear)

[8] Nickel B. G., Krumhansl J. A., “Self-consistent average Green's function in random lattices: a generalized coherent-potential approximation (n) and its diagrammatic equivalents”, Phys. Rev., B4:12 (1971), 4354–4363 | DOI | MR

[9] Shriffer Dzh., Teoriya sverkhprovodimosti, Nauka, M., 1970, 311

[10] Kharrison U., Psevdopotentsialy v teorii metallov, Mir, M., 1968, 366 pp.