Inverse problem of reconstructing a~confining potential for the radial Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 70-79
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of reconstructing a confining (increasing at infinity) potential for the radial Schrödinger equation from the spectral distribution function is considered. A perturbation to the potential that changes the first $n$ levels and normalization constants is constructed and its asymptotic behavior as $r\to\infty$ investigated. The connection between the moments of the spectral distribution function and the derivatives of the potential at the origin is established. The procedure for reconstructing an increasing potential from a finite set of experimental data is proposed.
@article{TMF_1981_48_1_a7,
author = {M. N. Adamyan},
title = {Inverse problem of reconstructing a~confining potential for the radial {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {70--79},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a7/}
}
TY - JOUR AU - M. N. Adamyan TI - Inverse problem of reconstructing a~confining potential for the radial Schr\"odinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 70 EP - 79 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a7/ LA - ru ID - TMF_1981_48_1_a7 ER -
M. N. Adamyan. Inverse problem of reconstructing a~confining potential for the radial Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a7/