Inverse problem of reconstructing a confining potential for the radial Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 70-79
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of reconstructing a confining (increasing at infinity) potential for the radial Schrödinger equation from the spectral distribution function is considered. A perturbation to the potential that changes the first $n$ levels and normalization constants is constructed and its asymptotic behavior as $r\to\infty$ investigated. The connection between the moments of the spectral distribution function and the derivatives of the potential at the origin is established. The procedure for reconstructing an increasing potential from a finite set of experimental data is proposed.
@article{TMF_1981_48_1_a7,
author = {M. N. Adamyan},
title = {Inverse problem of reconstructing a~confining potential for the radial {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {70--79},
year = {1981},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a7/}
}
M. N. Adamyan. Inverse problem of reconstructing a confining potential for the radial Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a7/
[1] Thaker H. B., Quigg C., Rosner J., “Inverse scattering problem for quarkonium systems. I: One-dimensional formalism and methodology”, Phys. Rev., D18:1 (1978), 274–286
[2] Thaker H. B., Quigg C., Rosner J., “Inverse scattering problem for quarkonium systems. II: Applications to $\Psi$ and $\Upsilon$ families”, Phys. Rev., D18:1 (1978), 287–295
[3] Marchenko V. A., Spektralnaya teoriya operatorov Shturma-Liuvillya, Naukova dumka, Kiev, 1972 | MR | Zbl
[4] Smirnov V. I., Kurs vysshei matematiki, t. IV, ch. 1, Nauka, M., 1974 | MR
[5] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR