Peierls-Fröhlich problem and potentials with finite number of gaps. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 60-69
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized Peierls–Fröhlich problem on the formation of a forbidden band in the energy spectrum of electrons due to the deformation of a potential which originally has $n$ bands is formulated. It is shown that the solutions to this problem, which are the extremals of the generalized functional of the Peierls–Fröhlich free energy, form a $(n+1)$-parameter manifold of $(n+1)$-gap potentials. Equations are obtained which the boundaries of the gaps of these potentials satisfy. It is shown that the motions on the manifold of solutions of the considered problem described by Korteweg–de Vries equations are Fröhlieh collective modes. The theory makes it possible to describe phase transitions of a lattice between periodic and quasiperiodie structures.
@article{TMF_1981_48_1_a6,
     author = {E. D. Belokolos},
     title = {Peierls-Fr\"ohlich problem and potentials with finite number of {gaps.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {60--69},
     year = {1981},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a6/}
}
TY  - JOUR
AU  - E. D. Belokolos
TI  - Peierls-Fröhlich problem and potentials with finite number of gaps. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 60
EP  - 69
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a6/
LA  - ru
ID  - TMF_1981_48_1_a6
ER  - 
%0 Journal Article
%A E. D. Belokolos
%T Peierls-Fröhlich problem and potentials with finite number of gaps. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 60-69
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a6/
%G ru
%F TMF_1981_48_1_a6
E. D. Belokolos. Peierls-Fröhlich problem and potentials with finite number of gaps. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 60-69. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a6/

[1] Belokolos E. D., “Zadacha Paierlsa-Frelikha i konechnozonnye potentsialy, I”, TMF, 45:2 (1980), 268–275 | MR

[2] Novikov S. P., “Periodicheskaya zadacha Kortevega-de Friza, I”, Funkts. analiz, 8:3 (1974), 54–66 | MR | Zbl

[3] Dubrovin B. A., “Periodicheskaya zadacha dlya uravneniya Kortevega-de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz, 9:3 (1975), 41–51 | MR | Zbl

[4] Bogoyavlenskii O. I., “Ob integralakh vysshikh statsionarnykh uravnenii KdF i sobstvennykh chislakh uravneniya Khilla”, Funkts. analiz, 10:2, 9–12 | MR | Zbl

[5] Frohlich H., “On the theory of superconductivity. One-dimensional case”, Proc. Roy. Soc., A223 (1954), 296–305 | DOI | Zbl

[6] Its A. R., Matveev V. B., “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega-de Friza”, TMF, 23:1 (1975), 51–68 | MR

[7] Lee P. A., Rice T. M., Anderson P. W., “Conductivity from charge or spin waves”, Sol. Stat. Commun., 14:8 (1974), 703–709 | DOI

[8] Lax P. D., “Periodic solutions of the KdV equations”, Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl

[9] Bogoyavlenskii O. I., Novikov S. P., “O svyazi gamiltonovykh formalizmov statsionarnykh i nestatsionarnykh zadach”, Funkts. analiz, 10:1 (1976), 9–13 | MR | Zbl

[10] Its A. R., Matveev V. B., “Ob odnom klasse reshenii uravneniya Kortevega-de Friza”, Problemy matem. fiziki, no. 8, LGU, L., 1976, 70–92 | MR

[11] Belokolos E. D., “Self-consistent considerations of the Peierls phase transition”, Abstracts Intern. Conf. Quasi One-Dimensional Conductors (September 4–8, 1978, Dubrovnik, SFR Yugoslavia), 47 | Zbl