Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 49-59
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that partial differential equations with almost periodic coefficients can be obtained by a quantization like Weyl quantization on $R^{2n}$ from Hamilton[an systems on the cotangent bundle of some infinite-dimensional manifold, the Bohr compactifieation. Hamilton[an and quantum mechanics are also constructed on the cotangent bundle of an arbitrary compact connected Abelian group.
@article{TMF_1981_48_1_a5,
author = {M. A. Antonets and I. A. Shereshevskii},
title = {Weyl quantization on compact {Abelian} groups and the quantum mechanics of almost periodic systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {49--59},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/}
}
TY - JOUR AU - M. A. Antonets AU - I. A. Shereshevskii TI - Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 49 EP - 59 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/ LA - ru ID - TMF_1981_48_1_a5 ER -
%0 Journal Article %A M. A. Antonets %A I. A. Shereshevskii %T Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems %J Teoretičeskaâ i matematičeskaâ fizika %D 1981 %P 49-59 %V 48 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/ %G ru %F TMF_1981_48_1_a5
M. A. Antonets; I. A. Shereshevskii. Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/