Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that partial differential equations with almost periodic coefficients can be obtained by a quantization like Weyl quantization on $R^{2n}$ from Hamilton[an systems on the cotangent bundle of some infinite-dimensional manifold, the Bohr compactifieation. Hamilton[an and quantum mechanics are also constructed on the cotangent bundle of an arbitrary compact connected Abelian group.
@article{TMF_1981_48_1_a5,
     author = {M. A. Antonets and I. A. Shereshevskii},
     title = {Weyl quantization on compact {Abelian} groups and the quantum mechanics of almost periodic systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {49--59},
     year = {1981},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/}
}
TY  - JOUR
AU  - M. A. Antonets
AU  - I. A. Shereshevskii
TI  - Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 49
EP  - 59
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/
LA  - ru
ID  - TMF_1981_48_1_a5
ER  - 
%0 Journal Article
%A M. A. Antonets
%A I. A. Shereshevskii
%T Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 49-59
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/
%G ru
%F TMF_1981_48_1_a5
M. A. Antonets; I. A. Shereshevskii. Weyl quantization on compact Abelian groups and the quantum mechanics of almost periodic systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a5/

[1] Zaiman Dzh., Printsipy teorii tverdogo tela, Mir, M., 1966

[2] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, t. I, Nauka, M., 1975 | MR

[3] Berezin F. A., “Kvantovanie”, Izv. AN SSSR, ser. matem., 38 (1974), 1116–1175 | MR | Zbl

[4] Shubin M. A., “Pochti-periodicheskie funktsii i differentsialnye operatory s chastotnymi proizvodnymi”, Usp. matem. nauk, 33:2, 3 (1979), 3–47

[5] Shubin M. A., “Spektralnaya teoriya i indeks ellipticheskikh operatorov s pochtiperiodicheskimi koeffitsientami”, Usp. matem. nauk, 34:2 (1979), 95–135 | MR | Zbl

[6] Shereshevcki I. A., Lett. Math. Phys. (to appear)

[7] Slawianowski Y. Y., “Abelian groups and the Weyl approach to kinematics. Nonlocal function-algebras”, Rep. Math. Phys., 5:3 (1974), 259–319 | DOI | MR

[8] Zhikov V. V., Levitan B. M., Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978 | MR

[9] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization”, Ann. Phys., 111:1 (1979), 61–110 | DOI | MR