@article{TMF_1981_48_1_a3,
author = {R. P. Zaikov},
title = {On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {34--43},
year = {1981},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a3/}
}
R. P. Zaikov. On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 34-43. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a3/
[1] Luscher M., Pohlmeyer L., “Scattering of massless lumps and non-local charges in the two-dimensional classical non-linear $\sigma$-model”, Nucl. Phys., B137:1 (1970), 46–54 | MR
[2] Luscher M., “Quantum non-local charges and absence of particle production in the two-dimensional non-linear $\sigma$-model”, Nucl. Phys., B135:1 (1978), 1–19 | DOI | MR
[3] Brezin E., “Remarks about the existence of non-local charges in two-dimensional models”, Phys. Lett., 82B:3, 4 (1979), 442–444 | DOI | MR
[4] Golo V. G., Perelomov A. M., “Solution of the quality equations for the two-dimensional $SU(N)$ invariant model”, Phys. Lett., 79B:1, 2 (1978), 112–113 | DOI | MR
[5] Dubois-Violete M., Georgelin Y., “Gauge theory in terms of projector valued fields”, Phys. Lett., 82B:2 (1979), 251–254 | DOI
[6] Frohlich J., A new look at generalized non-linear $\sigma$-models and Yang-Mills theory, Preprint, THES, Bures-sur-Yvette, 1978 | MR
[7] Witten E., “Supersymmetric form of the non-linear $\sigma$-model in two dimenisons”, Phys. Rev., D16:10 (1977), 2991–2994 | MR
[8] Mikhailov A. V., Perelomov A. M., “Resheniya tipa instantonov v supersimmetrichnykh kiralnykh modelyakh”, Pisma v ZhETF, 29:7 (1979), 445–449
[9] Corrigau E., Zachos C. K., “Non-local charges for the supersymmetric $\sigma$-model”, Phys. Lett., 88B:3, 4 (1979), 276–279
[10] Zaikov R. P., “Supersymmetric generalised non-linear sigma models. An infinite set of non-local conserved currents and instanton like solutions”, Bulg. J. Phys., 7:2 (1980), 155–160 | MR
[11] Prasad M. K., “Non-local continuity equations for self-dual $SU(N)$ Yang-Mills fields”, Phys. Lett., 87B:3 (1979), 237–238 | DOI
[12] Chodos A., “Conserved quantities in classical Yang-Mills theory”, Phys. Rev., D20:4 (1979), 915–920 | MR
[13] Barbashov B. M., Nesterenko V. V., Nepreryvnye simmetrii v teorii polya, Preprint R2-12029, OIYaI, Dubna, 1978 | MR