On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 34-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of an infinite number of nonloeal conserved supercurrents is proved in the case of the supersymmetric generalized nonlinear sigma models. The explicit form of three series of such currents is obtained. It is shown that these currents are of the Noether type and that they are generated by nonlinear and nonlocal field transformations.
@article{TMF_1981_48_1_a3,
     author = {R. P. Zaikov},
     title = {On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {34--43},
     year = {1981},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a3/}
}
TY  - JOUR
AU  - R. P. Zaikov
TI  - On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 34
EP  - 43
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a3/
LA  - ru
ID  - TMF_1981_48_1_a3
ER  - 
%0 Journal Article
%A R. P. Zaikov
%T On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 34-43
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a3/
%G ru
%F TMF_1981_48_1_a3
R. P. Zaikov. On nonlocal conserved currents in supersymmetric generalized nonlinear sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 34-43. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a3/

[1] Luscher M., Pohlmeyer L., “Scattering of massless lumps and non-local charges in the two-dimensional classical non-linear $\sigma$-model”, Nucl. Phys., B137:1 (1970), 46–54 | MR

[2] Luscher M., “Quantum non-local charges and absence of particle production in the two-dimensional non-linear $\sigma$-model”, Nucl. Phys., B135:1 (1978), 1–19 | DOI | MR

[3] Brezin E., “Remarks about the existence of non-local charges in two-dimensional models”, Phys. Lett., 82B:3, 4 (1979), 442–444 | DOI | MR

[4] Golo V. G., Perelomov A. M., “Solution of the quality equations for the two-dimensional $SU(N)$ invariant model”, Phys. Lett., 79B:1, 2 (1978), 112–113 | DOI | MR

[5] Dubois-Violete M., Georgelin Y., “Gauge theory in terms of projector valued fields”, Phys. Lett., 82B:2 (1979), 251–254 | DOI

[6] Frohlich J., A new look at generalized non-linear $\sigma$-models and Yang-Mills theory, Preprint, THES, Bures-sur-Yvette, 1978 | MR

[7] Witten E., “Supersymmetric form of the non-linear $\sigma$-model in two dimenisons”, Phys. Rev., D16:10 (1977), 2991–2994 | MR

[8] Mikhailov A. V., Perelomov A. M., “Resheniya tipa instantonov v supersimmetrichnykh kiralnykh modelyakh”, Pisma v ZhETF, 29:7 (1979), 445–449

[9] Corrigau E., Zachos C. K., “Non-local charges for the supersymmetric $\sigma$-model”, Phys. Lett., 88B:3, 4 (1979), 276–279

[10] Zaikov R. P., “Supersymmetric generalised non-linear sigma models. An infinite set of non-local conserved currents and instanton like solutions”, Bulg. J. Phys., 7:2 (1980), 155–160 | MR

[11] Prasad M. K., “Non-local continuity equations for self-dual $SU(N)$ Yang-Mills fields”, Phys. Lett., 87B:3 (1979), 237–238 | DOI

[12] Chodos A., “Conserved quantities in classical Yang-Mills theory”, Phys. Rev., D20:4 (1979), 915–920 | MR

[13] Barbashov B. M., Nesterenko V. V., Nepreryvnye simmetrii v teorii polya, Preprint R2-12029, OIYaI, Dubna, 1978 | MR