Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 24-33

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classical inverse scattering method, an expression is derived for the Poisson brackets of the elements of the transition matrix in the local case when the Poisson brackets of the elements of the matrix of the auxiliary spectral problem contain in addition to the $\delta$ function a finite number of derivatives of it. An equation determining the classical $r$ matrix is obtained. The commutation relations for the elements of the quantum monodromy matrix in the analogous situation are discussed.
@article{TMF_1981_48_1_a2,
     author = {S. A. Tsyplyaev},
     title = {Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--33},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/}
}
TY  - JOUR
AU  - S. A. Tsyplyaev
TI  - Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 24
EP  - 33
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/
LA  - ru
ID  - TMF_1981_48_1_a2
ER  - 
%0 Journal Article
%A S. A. Tsyplyaev
%T Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 24-33
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/
%G ru
%F TMF_1981_48_1_a2
S. A. Tsyplyaev. Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case). Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 24-33. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/