Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 24-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the classical inverse scattering method, an expression is derived for the Poisson brackets of the elements of the transition matrix in the local case when the Poisson brackets of the elements of the matrix of the auxiliary spectral problem contain in addition to the $\delta$ function a finite number of derivatives of it. An equation determining the classical $r$ matrix is obtained. The commutation relations for the elements of the quantum monodromy matrix in the analogous situation are discussed.
@article{TMF_1981_48_1_a2,
     author = {S. A. Tsyplyaev},
     title = {Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--33},
     year = {1981},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/}
}
TY  - JOUR
AU  - S. A. Tsyplyaev
TI  - Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 24
EP  - 33
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/
LA  - ru
ID  - TMF_1981_48_1_a2
ER  - 
%0 Journal Article
%A S. A. Tsyplyaev
%T Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 24-33
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/
%G ru
%F TMF_1981_48_1_a2
S. A. Tsyplyaev. Commutation relations of the transition matrix in the classical and quantum inverse scattering methods (local case). Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 24-33. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a2/

[1] Sklyanin E. K., “Metod obratnoi zadachi rasseyaniya i kvantovoe nelineinoe uravnenie Shredingera”, DAN SSSR, 244:6 (1979), 1337–1341 | MR

[2] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi, I”, TMF, 40:2 (1979), 194–220 | MR

[3] Faddeev L. D., Kvantovye vpolne integriruemye modeli teorii polya, Preprint R-2-79, LOMI, L., 1979

[4] Sklyanin E. K., On complete integrability of the Landau-Lifshitz equation, Preprint E-3-79, LOMI, L., 1979 | MR

[5] Sklyanin E. K., “Kvantovyi variant metoda obratnoi zadachi rasseyaniya”, Zap. nauchn. semin. LOMI, 95 (1980), 55–128 | MR | Zbl

[6] Izergin A. G., Korepin V. E., The inverse scattering method approach to the quantum Shabat-Mikhailov model, Preprint E-3-80, LOMI, L., 1980 | MR | Zbl

[7] Zakharov V. E., Faddeev L. D., “Uravnenie Kortevega-de Friza — vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego prilozh., 5:4 (1971), 18–27 | MR | Zbl

[8] Faddeev L. D., “A hamiltonian interpretation of the inverse scattering method. Topics in Current Physics”, Solitons, v. 17, eds. R. K. Bullough, P. I. Caudrey, Springer-Verlag, Berlin, Heidelberg, New York, 1980, 339–354 | DOI | MR

[9] Shimizu T., Wadati M., “A new integrable evolution equation”, Progr. Theor. Phys., 63:3 (1980), 808–820 | DOI | MR | Zbl

[10] Takhtadzhyan L. A., Faddeev L. D., “Gamiltonova sistema, svyazannaya s uravneniem $u_{\xi\eta}+\sin u=0$”, Tr. MIAN, CXLII (1976), 254–266 | Zbl

[11] Gerdzhikov V. S., Ivanov M. I., Kulish P. P., “Kvadratichnyi puchok i nelineinye uravneniya”, TMF, 44:3 (1980), 342–357 | MR | Zbl

[12] Zakharov V. E., Mikhailov A. V., “Relyativistski-invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi”, ZhETF, 74:6 (1978), 1953–1973 | MR

[13] McKean H. P., Boussinesq's equation as a hamiltonian system. Topics in functional analysis, eds. I. Gohberg, M. Kac, Academic Press, New York, 1978, 217–226 | MR