Solution of inhomogeneous Schrödinger equation with model pseudopotential
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 121-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solutions of an inhomogeneous Schrödinger equation with model pseudopotentiaI and inhomogeneity which depends on the physical nature of the perturbation are represented as iterative solutions of an integral equation whose kernel contains the Coulomb Green's function. The obtained results are shown to be useful for calculating the physical properties of many-particle systems.
@article{TMF_1981_48_1_a12,
     author = {E. O. Voronkov and V. V. Rossikhin},
     title = {Solution of inhomogeneous {Schr\"odinger} equation with model pseudopotential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--128},
     year = {1981},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a12/}
}
TY  - JOUR
AU  - E. O. Voronkov
AU  - V. V. Rossikhin
TI  - Solution of inhomogeneous Schrödinger equation with model pseudopotential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 121
EP  - 128
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a12/
LA  - ru
ID  - TMF_1981_48_1_a12
ER  - 
%0 Journal Article
%A E. O. Voronkov
%A V. V. Rossikhin
%T Solution of inhomogeneous Schrödinger equation with model pseudopotential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 121-128
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a12/
%G ru
%F TMF_1981_48_1_a12
E. O. Voronkov; V. V. Rossikhin. Solution of inhomogeneous Schrödinger equation with model pseudopotential. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a12/

[1] Rossikhin V. V., “K teorii elektroopticheskikh parametrov molekulF”, izika molekul, 6 (1978), 33–60

[2] Laurenzi B. J., Flamberg A., “Electronic computation of first-order wave functions using Green's functions”, Int. J. Quant. Chem., 11 (1977), 869–880 | DOI

[3] Hostler L., “Coulomb Green's functions and the Farry approximation”, J. Math. Phys., 5:5 (1964), 591–611 | DOI | MR

[4] Bakhrakh V. L., Vetchinkin S. I., “Funktsiya Grina uravneniya Shredingera dlya prosteishikh sistem”, TMF, 6:3 (1971), 392–402 | MR

[5] Mak-Vini R., Satklif B., Kvantovaya mekhanika molekul, Mir, M., 1972

[6] Borisov M. S., Vetchinkin S. I., “Momenty elektronnogo raspredeleniya v modeli ob'edinennogo atoma dlya desyatielektronnykh gidridov”, TEKh, 6:2 (1970), 158–167

[7] Greiser A. I., Tolmachev V. V., “Ispolzovanie kulonovskoi funktsii Grina v teorii vozmuschenii dlya atomov”, TEKh, 4:2 (1970), 165–170

[8] Adamov M. N., Borisova N. P., “Primenenie metoda Khartri-Foka v raschetakh polyarizuemostei atomov i molekul”, Problemy teoreticheskoi fiziki, no. 1, LGU, L., 1974, 117–157

[9] Roothaan C. C. J., “New developments in molecular orbital theory”, Rev. Mod. Phys., 23 (1951), 69–90 | DOI

[10] Dalgarno A., “Perturbation theory for atomic systems”, Proc. Roy. Soc. A, 251:1265 (1959), 282–291 | DOI | MR

[11] Ransil B. J., “Studies in molecular structure. II: LCAO-MO-SCF wave functions for selected first-row diatomic molecules”, Rev. Mod. Phys., 32:2 (1960), 245–254 | DOI | MR

[12] Haley L. V., Hameka H. F., “Calculation of molecular electric polarizabilities and dipole moments. II: LiH molecule”, Int. J. Quant. Chem., 11 (1977), 733–741 | DOI

[13] O'Hare J. M., Hurst R. P., “Hyperpolarizabilities of some polar diatomic molecules”, J. Chem. Phys., 46:11 (1967), 2356–2366 | DOI

[14] Zaslavskaya L. I., Rossikhin V. V., Yarkovoi G. O., Raschet elektronnykh polyarizuemostei molekul v odnodeterminantnom priblizhenii, Preprint 75-55R, ITF, Kiev, 1975

[15] Rossikhin V. V., Zaslavskaya L. I., Morozov V. P., “Opredelenie proizvodnykh dipolnogo momenta i polyarizuemostei dvukhatomnykh molekul na osnove teoremy viriala”, Opt. i spektr., 41:5 (1976), 776–781

[16] Sadley A. J., “Molecular electric polarizabilityes. III: Near-Hartree – Fock polarizabilities of small molecules using EFV GTO's”, Mol. Phys., 34:3 (1977), 731–743 | DOI