@article{TMF_1981_48_1_a1,
author = {B. S. Getmanov},
title = {Integrable two-dimensional {Lorentz-invariant} nonlinear model of a~complex scalar field (complex {sine-Gordon~II)}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {13--23},
year = {1981},
volume = {48},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a1/}
}
TY - JOUR AU - B. S. Getmanov TI - Integrable two-dimensional Lorentz-invariant nonlinear model of a complex scalar field (complex sine-Gordon II) JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 13 EP - 23 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a1/ LA - ru ID - TMF_1981_48_1_a1 ER -
B. S. Getmanov. Integrable two-dimensional Lorentz-invariant nonlinear model of a complex scalar field (complex sine-Gordon II). Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a1/
[1] Getmanov B. S., Two-dimensional field theory models with higher integrals of motion, Preprint E2-80-319, JINR, Dubna, 1980
[2] Pohlmyer K., “Integrable Hamiltonian systems”, Commun. Math. Phys., 46 (1976), 207–221 | DOI | MR
[3] Getmanov B. S., “Novaya lorents-invariantnaya sistema s tochnymi mnogosolitonnymi resheniyami”, Pisma ZhETF, 25:2 (1977), 132–136; “Интегрируемая модель нелинейного комплексного скалярного поля”, ТМФ, 38:2 (1979), 186–194 | MR
[4] Lund F., Regge T., “Unified approach to strings and vortices”, Phys. Rev., 14:6 (1976), 1524–1535 | MR | Zbl
[5] Wadati M., “Invariances and conservation laws of the $\mathrm{K}-\mathrm{dV}$ equation”, Stud. Appl. Math., 59 (1978), 153–186 | DOI | MR | Zbl
[6] Ibragimov N. Kh., Shabat A. B., “Uravnenie K$-$deF s gruppovoi tochki zreniya”, DAN SSSR, 244:1 (1979), 57–61 | MR | Zbl
[7] Zhiber A. V., Shabat A. B., “Uravneniya Kleina-Gordona s netrivialnoi gruppoi”, DAN SSSR, 247:5 (1979), 1103–1107 | MR
[8] Getmanov B. S., Vzaimodeistvie solitonov uravneniya Kleina-Gordona, Preprint R2-10208, OIYaI, Dubna, 1976
[9] Kuznetsov E. A., Mikhailov A. V., “O polnoi integriruemosti dvumernoi klassicheskoi modeli Tirringa”, TMF, 30:3 (1977), 303–314 | MR
[10] Zakharov V. E., Shabat A. B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi”, Funktsionalnyi analiz, 13:3 (1979), 13–22 | MR | Zbl
[11] Zakharov V. E., Glava v kn.: Kunin I. A., Teoriya uprugikh sred s mikrostrukturoi, Mir, M., 1976 | MR
[12] Bogomolnyi E. B., “Stabilnost klassicheskikh reshenii”, YaF, 24 (1977), 861–872 | MR
[13] Hirota R., Lecture Notes in Mathematics, 515, 1976, 40–68 | DOI | MR | Zbl
[14] Zakharov V. E., Mikhailov A. V., “Dvumernye integriruemye modeli teorii polya”, ZhETF, 74:6 (1978), 1953–1973 | MR
[15] Budagov A. S., “Vpolne integriruemaya dvumernaya model teorii polya s netrivialnym vzaimodeistviem chastits”, Zap. nauchn. seminarov LOMI, 77 (1978), 24–56 | MR | Zbl