Theory of group representations and integration of nonlinear dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For nonlinear two-dimensional dynamical systems associated with graded Lie algebras a method is developed for constructing general solutions. The construction is based on the realization of a Lax type representation by operators which take values in the corresponding algebra and uses the theory of representations of algebras.
@article{TMF_1981_48_1_a0,
     author = {A. N. Leznov and M. V. Saveliev and V. G. Smirnov},
     title = {Theory of group representations and integration of nonlinear dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--12},
     year = {1981},
     volume = {48},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a0/}
}
TY  - JOUR
AU  - A. N. Leznov
AU  - M. V. Saveliev
AU  - V. G. Smirnov
TI  - Theory of group representations and integration of nonlinear dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 3
EP  - 12
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a0/
LA  - ru
ID  - TMF_1981_48_1_a0
ER  - 
%0 Journal Article
%A A. N. Leznov
%A M. V. Saveliev
%A V. G. Smirnov
%T Theory of group representations and integration of nonlinear dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 3-12
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a0/
%G ru
%F TMF_1981_48_1_a0
A. N. Leznov; M. V. Saveliev; V. G. Smirnov. Theory of group representations and integration of nonlinear dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 48 (1981) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_1981_48_1_a0/

[1] Toda M., “Studies of a non-linear lattice”, Phys. Rep., C18 (1975), 1–123 ; “Exact treatment of non-linear lattice waves”, Suppl. Progr. Theor. Phys., 59 (1976), 1–161 | DOI | MR | DOI

[2] Takhtadzhyan L. A., Faddeev L. D., “Suschestvenno-nelineinaya odnomernaya model klassicheskoi teorii polya”, TMF, 21:2 (1974), 160–174 ; Корепин В. Е., Фаддеев Л. Д., “Квантование солитонов”, ТМФ, 25:2 (1976), 147–163 | MR

[3] Henon M., “Integrals of the Toda lattice”, Phys. Rev., B9 (1974), 1921–1923 ; Flaschka H., “Toda lattice”, Phys. Rev., B9 (1974), 1924–1925 ; Манаков С. В., “О полной интегрируемости и стохастизации в дискретных динамических системах”, ЖЭТФ, 67:2 (1974), 534–555 ; Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Commun. Math. Phys., 51 (1976), 201–209 ; Olshanetsky M. A., Perelomov A. M., “Explicit solutions of classical generalized Toda models”, Invent Math., 54 (1979), 261–269 ; Moser I., “Finitely many mass points on the line under the influence of an exponential potential - an integrable system”, Lecture Notes in Phys., 38 (1976), 97–101 | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | DOI | MR | Zbl

[4] Leznov A. N., Saveliev M. V., “Cylindrically symmetric instantons for the gauge groups of rank $2: SU(3)$, $O(5)$ and $G_2$”, Phys. Lett., 83B:3 (1979), 314–317 ; Leznov A. N., Saveliev M. V., “Exact monopole solutions in gauge theories for an arbitrary compact groups”, Lett. Math. Phys., 3 (1979), 207–211 ; Leznov A. N., Saveliev M. V., Cylindrically symmetric instantons for the arbitrary compact gauge groups, Preprint 78-177, IHEP, Serpukhov, 1978 ; Bais F. A., Wilkinson D., “Exact $SU(N)$ monopole solutions with spherical symmetry”, Phys. Rev., D19 (1979), 2410–2422 | DOI | MR | DOI | MR | MR

[5] Leznov A. N., “O polnoi integriruemosti odnoi nelineinoi sistemy differentsialnykh uravnenii v chastnykh proizvodnykh v dvumernom prostranstve”, TMF, 42 (1980), 343–349 | MR | Zbl

[6] Leznov A. N., Savelev M. V., “Teoriya predstavlenii grupp i integrirovanie nelineinykh sistem vida $x_{\alpha, z\overline{z}}=\exp(Kx)_\alpha$”, Trudy simpoziuma po teorii solitonov, ITF AN USSR, Kiev, 1979

[7] Leznov A. N., Saveliev M. V., “Representation of zero curvature for the system of nonlinear partial differential equations $x_{\alpha, z\overline{z}}=\exp(Kx)_\alpha$ and its integrability”, Lett. Math. Phys., 3 (1979), 489–494 | DOI | MR | Zbl

[8] Leznov A. N., Saveliev M. V., “Representation theory and integration nonlinear spherically symmetric equations to gauge theories”, Commun. Math. Phys., 74 (1980), 111–119 | DOI | MR

[9] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya, II”, Sovrem. problemy matem., 3, VINITI, M., 1974, 93–180 | MR

[10] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Sovrem. problemy matem., 11, VINITI, M., 1978, 5–152 | MR

[11] Dubrovin V. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Usp. matem. n., 31:1 (1976), 55–136 | MR | Zbl

[12] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[13] Leznov A. N., Savelev M. V., “Tochnye tsilindricheski-simmetrichnye resheniya klassicheskikh uravnenii kalibrovochnykh teorii dlya proizvolnykh kompaktnykh grupp Li”, EChAYa, 11, 40–92 | MR

[14] Laks P. D., “Integraly nelineinykh evolyutsionnykh uravnenii i uedinennye volny”, Matematika, 13:5 (1969), 128–150

[15] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “The method for solving Korteveg-de Vries equations”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI

[16] Kats V. G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR, ser. matem., 32 (1968), 1323–1367 ; “О классификации простых алгебр Ли над полем с ненулевой характеристикой”, Изв. АН СССР, сер. матем., 34 (1970), 385–408 | Zbl | Zbl

[17] Moody R. V., “Lie algebras associated with generalized Cartan matrices”, Bull. Amer. Math. Soc., 73:2 (1967), 217–221 | DOI | MR | Zbl

[18] Moody R. V., “A new class of Lie Algebras”, J. Algebra, 10:2 (1968), 211–230 | DOI | MR

[19] Kostant B., “On Whittaker vectors and representation theory”, Invent. Math., 48:2 (1978), 101–184 | DOI | MR | Zbl

[20] Leznov A. N.,, Graded algebras of the second rank and integration of nonlinear equations $Y_{z\overline{z}}=\exp(2Y)-\exp(-2Y)$, $Y_{z\overline{z}}=2\exp(Y)-\exp(-2Y)$, Preprint 80-6, IHEP, Serpukhov, 1980

[21] Leznov A. N., Savelev M. V., “Tochnye resheniya dlya tsilindricheski-simmetrichnykh konfiguratsii kalibrovochnykh polei”, EChAYa, 12:1 (1981), 125–161 | MR