Distribution of dimers on a~plane square lattice in the Percus--Yevick approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 3, pp. 387-394
Voir la notice de l'article provenant de la source Math-Net.Ru
The total and direct correlation matrices of the distribution of dimers on a square lattice are calculated in the Percus–Yevick approximation. The solution that correctly describes the thermodynamic behavior of a lattice gas of dimers is distinguished among several solutions of the system of equations for the elements of the direct correlation matrix. The difference between the thermodynamic functions calculated by means of this solution and the functions found by extrapolating the power-law expansions becomes appreciable
only near the closely packed state of the lattice gas and in this region does not exceed $6\%$.
@article{TMF_1981_47_3_a9,
author = {E. V. Aksenenko and Yu. V. Shulepov},
title = {Distribution of dimers on a~plane square lattice in the {Percus--Yevick} approximation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--394},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/}
}
TY - JOUR AU - E. V. Aksenenko AU - Yu. V. Shulepov TI - Distribution of dimers on a~plane square lattice in the Percus--Yevick approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 387 EP - 394 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/ LA - ru ID - TMF_1981_47_3_a9 ER -
%0 Journal Article %A E. V. Aksenenko %A Yu. V. Shulepov %T Distribution of dimers on a~plane square lattice in the Percus--Yevick approximation %J Teoretičeskaâ i matematičeskaâ fizika %D 1981 %P 387-394 %V 47 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/ %G ru %F TMF_1981_47_3_a9
E. V. Aksenenko; Yu. V. Shulepov. Distribution of dimers on a~plane square lattice in the Percus--Yevick approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 3, pp. 387-394. http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/