@article{TMF_1981_47_3_a9,
author = {E. V. Aksenenko and Yu. V. Shulepov},
title = {Distribution of dimers on a~plane square lattice in the {Percus{\textendash}Yevick} approximation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--394},
year = {1981},
volume = {47},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/}
}
TY - JOUR AU - E. V. Aksenenko AU - Yu. V. Shulepov TI - Distribution of dimers on a plane square lattice in the Percus–Yevick approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 387 EP - 394 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/ LA - ru ID - TMF_1981_47_3_a9 ER -
E. V. Aksenenko; Yu. V. Shulepov. Distribution of dimers on a plane square lattice in the Percus–Yevick approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 3, pp. 387-394. http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a9/
[1] Guggenheim E. A., Mixtures, Clarendon, Oxford, 1952
[2] Montroll E. V., Prikladnaya kombinatornaya matematika, Sb., ed. Bekkenbakh E., Mir, M., 1968, Statistika reshetok
[3] Kasteleyn P. W., “Dimer statistics and phase transitions”, J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR
[4] Temperley H. N. V., Fisher M. E., “Dimer problem in statistical mechanics - an exact result”, Phil. Mag., 6:68 (1961), 1061–1063 | DOI | MR | Zbl
[5] Kasteleyn P. W., “The statistics of dimers on a lattice. 1: The number of dimer arrangements on a quadratic lattice”, Physica, 27:12 (1961), 1209–1225 | DOI | Zbl
[6] Fisher M. E., “Statistical mechanics of dimers on a plane lattice”, Phys. Rev., 124:6 (1961), 1664–1672 | DOI | MR | Zbl
[7] Rushbrooke G. S., Scoins H. I., Wakefield A. J., “The vapour pressures of athermal mixtures”, Discuss. Farad. Soc., 1953, no. 15, 57–65 | DOI
[8] Trevena D. H., “The entropy of mixing of athermal monomer-dimer liquid mixtures”, Proc. Phys. Soc., 84:542 (1964), 969–974 | DOI | MR
[9] Nagle J. F., “New series-expansion method for the dimer problem”, Phys. Rev., 152:1 (1966), 190–197 | DOI
[10] Gaunt D. S., “Exact series-expansion study of the monomer-dimer problem”, Phys. Rev., 179:1 (1969), 174–186 | DOI
[11] Baxter R. J., “Dimers on a rectangular lattice”, J. Math. Phys., 9:4 (1968), 650–654 | DOI | MR
[12] Runnels L. K., “Exact finite method of lattice statistics. III: Dimers on the square lattice”, J. Math. Phys., 11:3 (1970), 842–850 | DOI
[13] Degrève L., “Expansion series for the dimer-monomer problem”, Physica, 66:2 (1973), 395–402 | DOI
[14] Van Craen J., Bellemans A., “The excess combinatorial entropy of monomer-dimer mixtures”, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 19:1 (1971), 45–47
[15] Kaye R. D., Burley D. M., “Square lattice calculations for the general dimer and trimer problem using the Kikuchi method”, Physica, 87A:3 (1977), 499–514 | DOI
[16] Shulepov Yu. V., Aksenenko E. V., Reshetochnyi gaz, Naukova dumka, Kiev, 1981
[17] Percus J. K., Yevick G. J., “Analysis of classical statistical mechanics by means of collective coordinates”, Phys. Rev., 110:1 (1958), 1–8 | DOI | MR
[18] Percus J. K., “Approximation methods in classical statistical mechanics”, Phys. Rev. Lett., 8:11 (1962), 462–464 | DOI
[19] Wertheim M. S., “Integral equations in the theory of classical fluids”, J. Math. Phys., 8:4 (1967), 927–934 | DOI
[20] Shulepov Yu. V., “K statisticheskoi teorii neodnorodnykh klassicheskikh zhidkostei”, UFZh, 19:7 (1974), 1080–1085
[21] Verlet L., “On the theory of classical fluids, III”, Physica, 30:1 (1964), 95–104 | DOI | MR
[22] Rashbruk Dzh., “Ravnovesnye teorii zhidkogo sostoyaniya”, Fizika prostykh zhidkostei, Sb., ed. Zubarev D. N., Mir, M., 1971, 30–62
[23] Levesque D., Verlet L., “Integral equation for classical fluids and the lattice gas”, Phys. Lett., 11:1 (1964), 36–37 | DOI | MR
[24] Jancovici B., “Theory of freezing”, Physica, 31:7 (1965), 1017–1028 | DOI
[25] Heilmann O. J., Lieb E. H., “Theory of monomer-dimer systems”, Commun. Math. Phys., 25:3 (1972), 190–232 | DOI | MR | Zbl
[26] Gruber C., Kunz H., “General properties of polymer systems”, Commun. Math. Phys., 22:2 (1971), 133–161 | DOI | MR