$1/n$ Expansion: Calculation of the exponents $\eta$ and $\nu$ in the order $1/n^2$ for arbitrary number of dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 3, pp. 291-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme proposed earlier [1] is used to calculate the critical exponents $\eta$ and $\nu$ in the order $1/n^2$ for arbitrary number of dimensions of space. Some technical aspects of the calculation of massless diagrams are of independent interest.
@article{TMF_1981_47_3_a0,
     author = {A. N. Vasil'ev and Yu. M. Pis'mak and Yu. R. Khonkonen},
     title = {$1/n${~Expansion:} {Calculation} of the exponents~$\eta$ and~$\nu$ in the order~$1/n^2$ for arbitrary number of dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--306},
     year = {1981},
     volume = {47},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a0/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - Yu. M. Pis'mak
AU  - Yu. R. Khonkonen
TI  - $1/n$ Expansion: Calculation of the exponents $\eta$ and $\nu$ in the order $1/n^2$ for arbitrary number of dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 291
EP  - 306
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a0/
LA  - ru
ID  - TMF_1981_47_3_a0
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A Yu. M. Pis'mak
%A Yu. R. Khonkonen
%T $1/n$ Expansion: Calculation of the exponents $\eta$ and $\nu$ in the order $1/n^2$ for arbitrary number of dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 291-306
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a0/
%G ru
%F TMF_1981_47_3_a0
A. N. Vasil'ev; Yu. M. Pis'mak; Yu. R. Khonkonen. $1/n$ Expansion: Calculation of the exponents $\eta$ and $\nu$ in the order $1/n^2$ for arbitrary number of dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 3, pp. 291-306. http://geodesic.mathdoc.fr/item/TMF_1981_47_3_a0/

[1] Vasilev A. N., Pismak Yu. M., Khonkonen Yu. R., “Prostoi metod rascheta kriticheskikh indeksov v $1/n$-razlozhenii”, TMF, 46:2 (1981), 157–171 | MR

[2] Kazakov D. I., Tarasov O. V., Vladimirov A. A., Vychislenie kriticheskikh indeksov metodami kvantovoi teorii polya, Preprint E2-124961, OIYaI, Dubna, 1979 | MR

[3] Breźin E., Le Guillou J. G., Zinn-Justin J., Phase transition and critical phenomena, v. VI, eds. G. Domb, M. Green, Academic Press, New York, 1976 | MR

[4] Abe R., “Critical exponent $\eta$ up to $1/n^2$ for the three-dimensional system with shortrange interaction”, Progr. Theor. Phys., 49:6 (1973), 1877–1888 | DOI

[5] Okabe Y., Oku M., “$1/n$ expansion up to order $1/n^2$. II: Critical exponent $\beta$ for $d=3$”, Progr. Theor. Phys., 60:6 (1978), 1277–1286 | DOI

[6] Makeenko Yu. M., Konformnyi butstrap dlya $\varphi(4)^4$-vzaimodeistviya, Preprint ITEF-44, ITEF, Moskva, 1979

[7] D'Eramo M., Peliti L., Parisi G., “Theoretical predictions for critical exponents at $\lambda$-point of Bose liquids”, Lett. Nuovo Cim., 2:26 (1971), 878–880 | DOI

[8] Chetyrkin K. G., Tkachev F. V., Novyi podkhod k vychisleniyu mnogopetlevykh feinmanovskikh integralov, Preprint P-0118, IYaI AN SSSR, Moskva, 1979

[9] Breźin E., Zinn-Justin J., “Spontaneous breakdown of continuous symmetries near two dimensions”, Phys. Rev., B14:6 (1976), 3110–3120 | DOI | MR