Method of orthogonalized distorted waves in the theory of three-particle scattering
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 243-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new distorted-wave formalism is proposed in the three-body problem. It leads to the distorted wave Born approximation for reactions with rearrangement. To improve the convergence of the iterations of the obtained modified Faddeev equations with distorting potentials, the method of orthogonal projection is used. This leads to an improved Born approximation with orthogonalized distorted waves and makes it possible to do without the procedure of fitting the parameters of the distorting potentials to the experimental data. The proposed formalism automatically leads to regularization of the Faddeev equations with Coulomb interactions below the three-particle threshold.
@article{TMF_1981_47_2_a9,
     author = {V. I. Kukulin and V. N. Pomerantsev},
     title = {Method of orthogonalized distorted waves in the theory of three-particle scattering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--253},
     year = {1981},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a9/}
}
TY  - JOUR
AU  - V. I. Kukulin
AU  - V. N. Pomerantsev
TI  - Method of orthogonalized distorted waves in the theory of three-particle scattering
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 243
EP  - 253
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a9/
LA  - ru
ID  - TMF_1981_47_2_a9
ER  - 
%0 Journal Article
%A V. I. Kukulin
%A V. N. Pomerantsev
%T Method of orthogonalized distorted waves in the theory of three-particle scattering
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 243-253
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a9/
%G ru
%F TMF_1981_47_2_a9
V. I. Kukulin; V. N. Pomerantsev. Method of orthogonalized distorted waves in the theory of three-particle scattering. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a9/

[1] Reiner A. S., Jaffe A. I., “Solution of and standard approximations for an exactly soluble three-particle model of stripping”, Phys. Rev., 161:4 (1967), 935–944 ; Charnomordic B., Fayard C., Lamot G. H., “Three-body calculation of ${}^6\mathrm{Li}$ and $d$-$\alpha$ elastic scattering”, Phys. Rev., C15:3 (1977), 864–878 ; Haftel et al., “Application of the three-body model to the reactions ${}^6\mathrm{Li}({}^3\mathrm{He},t{}^3\mathrm{He}){}^3\mathrm{He}$ and ${}^6\mathrm{Li}({}^3\mathrm{He},{}^3\mathrm{He}{}^3\mathrm{He}){}^3\mathrm{He}$”, Phys. Rev., C16:1 (1977), 42–54 | DOI

[2] Alt E. O., Grassberger P., Sandhas W., “Derivation of the DWBA in an exact threeparticle theory”, Nucl. Phys., A139:1 (1969), 209–225 | DOI

[3] Dodd L. R., Greider K. R., “Rigorous solution of three-body scattering processes in the distorted-wave formalism”, Phys. Rev., 146:3 (1966), 675–686 | DOI | MR

[4] Edvi-Illes C. A., “On the convergence of certain distorted wave approximations”, Nucl. Phys., A164:2 (1971), 385–397 | DOI

[5] Pomerantsev V. N., “Ortogonalnoe proektirovanie v sisteme trekh chastits”, TMF, 29:1 (1976), 94–103

[6] Kukulin V. I., Pomerantsev V. N., “The orthogonal projection method in the scattering theory”, Ann. Phys. (N. Y.), 111:2 (1978), 330–363 | DOI | MR

[7] Veselova A. M., “Vydelenie dvukhchastichnykh kulonovskikh osobennostei v sisteme trekh zaryazhennykh chastits”, TMF, 3 (1970), 326–331 ; “Интегральные уравнения для трех частиц с кулоновским взаимодействием”, ТМФ, 35:2 (1978), 180–192

[8] Kukulin V. I., Pomerantsev V. N., “Perestroika i uluchshenie skhodimosti bornovskikh ryadov teorii rasseyaniya na osnove ortogonalnogo proektirovaniya”, TMF, 27:3 (1976), 373–385

[9] Kukulin V. I., Pomerantsev V. N., “Dúkhovye sostoyaniya i printsip Pauli v teorii mnogochastichnogo rasseyaniya”, YaF, 27:6 (1978), 1668–1676

[10] Saito S., “Interaction between clusters and Pauli principle”, Progr. Theor. Phys., 41:3 (1969), 705–719 | DOI

[11] Lippmann B. A., Shey H. M., “Optical-model analysis of low-energy $e$-hydrogen scattering”, Phys. Rev., 121:4 (1961), 1112–1118 | DOI

[12] Noble J. V., “Three-body problem for charged particles”, Phys. Rev., 161:4 (1967), 945–955 | DOI