First integrals of the one-dimensional quantum ising model with transverse magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 230-242
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Hamiltonian of the one-dimensional quantum Ising model with transverse magnetic field in infinite volume, all the finite first integrals are calculated; their explicit form is found and it is shown that they are in involution. No use is made of the $L$$A$ pair method or its modifications.
@article{TMF_1981_47_2_a8,
     author = {V. V. Anshelevich and E. V. Gusev},
     title = {First integrals of the one-dimensional quantum ising model with transverse magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--242},
     year = {1981},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a8/}
}
TY  - JOUR
AU  - V. V. Anshelevich
AU  - E. V. Gusev
TI  - First integrals of the one-dimensional quantum ising model with transverse magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 230
EP  - 242
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a8/
LA  - ru
ID  - TMF_1981_47_2_a8
ER  - 
%0 Journal Article
%A V. V. Anshelevich
%A E. V. Gusev
%T First integrals of the one-dimensional quantum ising model with transverse magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 230-242
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a8/
%G ru
%F TMF_1981_47_2_a8
V. V. Anshelevich; E. V. Gusev. First integrals of the one-dimensional quantum ising model with transverse magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 230-242. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a8/

[1] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR | Zbl

[2] Lüscher M., “Dynamical charges in the quantized renormalized massive Thirring model”, Nucl. Phys., B117 (1976), 475–492 | DOI

[3] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR

[4] Bashilov Yu. A., Pokrovsky S. V., “Conservation laws in the quantum version of $N$-positional Potts model”, Commun. Math. Phys., 76:2 (1980), 129–141 | DOI | MR

[5] Jimbo M., Miwa T., Aspects of holonomic quantum fields - isomonodromic deformation and Ising model, Preprint RIMS-317, Japan, 1980 | MR

[6] Gurevich B. M., Suhov Yu. M., “Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics, I”, Commun. Math. Phys., 49:1 (1976), 63–96 | DOI | MR

[7] Anshelevich V. V., “Pervye integraly i statsionarnye sostoyaniya kvantovoi spinovoi dinamiki Geizenberga”, TMF, 43:1 (1980), 107–110 | MR

[8] Ryuel D., Statisticheskaya mekhanika, Mir, M., 1971

[9] Sinai Ya. G., Khelemskii A. Ya., “Opisanie differentsirovanii v algebrakh tipa algebr lokalnykh nablyudaemykh spinovykh sistem”, Funkts. analiz i ego prilozh., 6:4 (1972), 99–100 | MR | Zbl

[10] Rumer Yu. B., “Termodinamika ploskoi dipolnoi reshetki”, UFN, 53:2 (1954), 245–284 | DOI | MR | Zbl