Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 225-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-dimensional quantum integrable models whose quasiclassical limits are principal ehiral fields with symmetric and nonsymmetric Lagrangians are proposed.
@article{TMF_1981_47_2_a7,
     author = {I. V. Cherednik},
     title = {Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--229},
     year = {1981},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a7/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 225
EP  - 229
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a7/
LA  - ru
ID  - TMF_1981_47_2_a7
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 225-229
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a7/
%G ru
%F TMF_1981_47_2_a7
I. V. Cherednik. Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 225-229. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a7/

[1] Sklyanin E. K., On complete integrability of the Landau-Lifshitz equation, Preprint LOMI E-3-1979, LOMI AN SSSR, Leningrad, 1979 | MR

[2] Yang C. N., “$S$-matrix for the one-dimensional $n$-body problem with repulsive or attractive $\delta$-function interaction”, Phys. Rev., 168 (1968), 1920–1923 | DOI

[3] Zakharov V. E., Mikhailov A. V., “Relyativistski-invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi”, ZhETF, 74:6 (1978), 1953–1973 | MR

[4] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Phys. (N. Y.), 70:1 (1972), 193–228 | DOI | MR | Zbl

[5] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., Kvantovyi metod obratnoi zadachi, I, Preprint LOMI P-I-79, LOMI AN SSSR, L., 1979

[6] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi”, UMN, 34:5 (1979), 14–63 | MR

[7] Faddeev L. D., Kvantovye vpolne integriruemye modeli teorii polya, Preprint LOMI R-2-79, LOMI AN SSSR, L., 1979

[8] Kaup D. J., The method of solution for stimulated Raman Scattering and Two-Photon Absorption, Preprint, April, 1980, Clarkson College of Technology | MR

[9] Shabat A. B., “Obratnaya zadacha rasseyaniya”, Dif. uravneniya, 15:10 (1979), 1824–1834 | MR | Zbl

[10] Sklyanin E. K., Kvantovyi variant metoda obratnoi zadachi rasseyaniya, Avtoref. dis. na soiskanie uch. st. kand. fiz.-matem. nauk, LOMI AN SSSR, L., 1980

[11] Polyakov A. M., “String representation and hidden symmetries for gauge fields”, Phys. Lett., 82B:2 (1979), 247–250 | DOI | MR

[12] Sutherland B., “Model for a multicomponent quantum system”, Phys. Rev., B12:9 (1975), 3795–3805 | DOI

[13] Kulish P. P., Reshetikhin N. V., Generalized Heisenberg Ferromagnet and the Gross-Neveu Model, Preprint LOMI E-4-79, LOMI AN SSSR, Leningrad, 1979