@article{TMF_1981_47_2_a6,
author = {A. N. Leznov and M. V. Saveliev and V. G. Smirnov},
title = {General solutions of the two-dimensional system of {Volterra} equations which realize the {B\"acklund} transformation for the {Toda} lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {216--224},
year = {1981},
volume = {47},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a6/}
}
TY - JOUR AU - A. N. Leznov AU - M. V. Saveliev AU - V. G. Smirnov TI - General solutions of the two-dimensional system of Volterra equations which realize the Bäcklund transformation for the Toda lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1981 SP - 216 EP - 224 VL - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a6/ LA - ru ID - TMF_1981_47_2_a6 ER -
%0 Journal Article %A A. N. Leznov %A M. V. Saveliev %A V. G. Smirnov %T General solutions of the two-dimensional system of Volterra equations which realize the Bäcklund transformation for the Toda lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 1981 %P 216-224 %V 47 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a6/ %G ru %F TMF_1981_47_2_a6
A. N. Leznov; M. V. Saveliev; V. G. Smirnov. General solutions of the two-dimensional system of Volterra equations which realize the Bäcklund transformation for the Toda lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 216-224. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a6/
[1] Leznov A. N., Saveliev M. V., “Representation of zero curvature for the system of nonlinear partial differential equations $x_{\alpha,z\overline{z}}=\exp(Kx)_\alpha$ and its integrability”, Lett. Math. Phys., 3 (1979), 489–494 | DOI | MR | Zbl
[2] Volterra V., Leçons sur la theorie Mathematique de la Lutte pour la Vie, Gautheier-Villars, Paris, 1931 | MR | Zbl
[3] Breizman B. N., Zakharov V. E., Musher S. A., “O kinetike indutsirovannogo rasseyaniya lengmyurovskikh voln na ionakh plazmy”, ZhETF, 64:4 (1973), 1297–1313; Захаров В. Е., Мушер С. А., Рубенчик А. М., “О нелинейной стадии параметрического возбуждения волн в плазме”, Письма ЖЭТФ, 19:5 (1974), 249–253
[4] “Exact treatment of nonlinear lattice waves”, Suppl. Progr. Theor. Phys., 59 (1976), 1–161 | DOI
[5] Dubrovin V. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Usp. matem. nauk, 31:1 (1976), 55–136 | MR | Zbl
[6] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR
[7] Kac M., van Moerbeke P., “On an explicitely soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16 (1975), 160–169 | DOI | MR | Zbl
[8] Toda M., “Studies of a non-linear lattice”, Phys. Reps., C18 (1975), 1–123 ; Henon M., “Integrals of the Toda lattice”, Phys. Rev., B9 (1974), 1921–1923 ; Flaschka H., “Toda lattice”, Phys. Rev., B9 (1974), 1924–1925 ; Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Commun. Math. Phys., 51 (1976), 201–209 ; Moser J., “Finitely many mass points on the line under the influence of an exponential potential - an integrable system”, Lecture notes in Physics, 38 (1976), 97–101 ; Olshanetsky M. A., Perelomov A. M., “Explicit Solutions of Classical Generalized Toda Models”, Invent. Math., 54 (1979), 261–269 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR | DOI | MR | Zbl
[9] Leznov A. N., Saveliev M. V., Cylindrically symmetric instantons for the arbitrary compact gauge groups, Preprint IHEP 78-177, Serpukhov, 1978 ; Leznov A. N., Saveliev M. V., “Exact monopole solutions in gauge theories for an arbitrary semisimple compact groups”, Lett. Math. Phys., 3 (1979), 207–211 ; Leznov A. N., Saveliev M. V., “Cylindrically symmetric instantons for the gauge groups of rank $2: SU(3)$, $O(5)$ and $G_2$”, Phys. Lett., 83B:3 (1979), 314–317 | MR | DOI | MR | DOI
[10] Leznov A. N., “O polnoi integriruemosti odnoi nelineinoi sistemy differentsialnykh uravnenii v chastnykh proizvodnykh v dvumernom prostranstve”, TMF, 42 (1980), 343–349 | MR | Zbl
[11] Bais F. A., Wilkinson D., “Exact $SU(N)$ monopole solutions with spherical symmetry”, Phys. Rev., D19 (1979), 2410–2422 | MR
[12] Miura R. M., “Korteweg-de Vries Equation and Generalization, I”, J. Math. Phys., 9:8 (1968), 1202–1204 | DOI | MR | Zbl
[13] Leznov A. N., Saveliev M. V., “Spherically summetric equations in gauge theories for an arbitrary semisimple compact Lie group”, Phys. Lett., 79B (1978), 294–297 | DOI | MR