WKB approximation for Tolman's problem (Collapsing dust)
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 177-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quantization of the motion of a spherically symmetric dust cloud is considered in Wheeler's approach. A WKB approximation is obtained for the wave functions and energy spectrum, the well-known problem of the ordering of the noncommuting factors in the given Hamiltonian being solved. An estimate of the tunneling of the surface of the cloud beyond the classical turning point (in particular, beyond the event horizon) is estimated.
@article{TMF_1981_47_2_a2,
     author = {V. K. Mal'tsev},
     title = {WKB~approximation for {Tolman's} problem {(Collapsing} dust)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--183},
     year = {1981},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a2/}
}
TY  - JOUR
AU  - V. K. Mal'tsev
TI  - WKB approximation for Tolman's problem (Collapsing dust)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 177
EP  - 183
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a2/
LA  - ru
ID  - TMF_1981_47_2_a2
ER  - 
%0 Journal Article
%A V. K. Mal'tsev
%T WKB approximation for Tolman's problem (Collapsing dust)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 177-183
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a2/
%G ru
%F TMF_1981_47_2_a2
V. K. Mal'tsev. WKB approximation for Tolman's problem (Collapsing dust). Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 177-183. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a2/

[1] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973 | MR

[2] Markov M. A., Frolov V. P., “Metrika zakrytogo mira Fridmana, vozmuschennaya elektricheskim zaryadom (k teorii elektromagnitnykh «fridmonov»)”, TMF, 3:1 (1970), 3–17

[3] Dodonov V. V., Man'ko V. I., Skarzhinsky V. D., Arbitrariness in the Choice of Action and Quantization of the Given Classical Equations of Motion, Preprint No 216, P. N. Lebedev Physical Institute, Moscow, 1978

[4] DeWitt B. S., “Quantum theory of Gravity. I: The Canonical theory”, Phys. Rev., 160:5 (1967), 1113–1148 | DOI | Zbl

[5] Wheeler J. A., Relativity, groups and topology, Gordon and Breach Inc., New York, 1964 | MR

[6] Zommerfeld A., Volnovaya mekhanika, GTTI, M., 1933

[7] Blyth W. F., Isham C. J., “Quantization of a Friedmann universe filled with a scalar field”, Phys. Rev., D11:4 (1975), 768–783 | MR

[8] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, GTTI, M., 1948