Asymptotic behavior of the spectrum of an~anharmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 266-276
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic expansion
$$
\lambda_n=n-\frac{1}{2}+\frac{1}{2\pi\sqrt n}\biggl[\int_{-\infty}^{\infty}q(t)d(t)+o(1)\biggr], \quad n\to\infty,
$$
is obtained for the spectrum of the equation $-y^{''}+[x^2/4+q(x)]y=\lambda y$, $-\infty$, of the anharmonic oscillator. The ease when the potential $v(x)$ has the form $v(x)=\alpha|x|+q(x)$ is also considered.
@article{TMF_1981_47_2_a11,
author = {L. A. Sakhnovich},
title = {Asymptotic behavior of the spectrum of an~anharmonic oscillator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {266--276},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a11/}
}
L. A. Sakhnovich. Asymptotic behavior of the spectrum of an~anharmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 266-276. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a11/