Asymptotic estimates in perturbation theory and the structure of functional integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 163-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic series of perturbation theory are investigated for the example of the perturbation series for the ground-state energy of an anharmonic oscillator. The functional integrals in the Feynman expression for the ground-state energy are continued to the plane of complex values of the coupling constant $g$. The discontinuity of the functional integral across the cut $g\leqslant 0$ is calculated by the method of stationary phase. Because the extremals of the action are complex at unphysical values of $g$, the question arises of a transition in the functional integrals to integration with respect to a complex functional variable. By a special change of variable in the functional integral, this problem is reduced to the investigation of an ordinary integral.
@article{TMF_1981_47_2_a1,
     author = {M. Z. Iofa and D. Yu. Kuznetsov},
     title = {Asymptotic estimates in perturbation theory and the structure of functional integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--176},
     year = {1981},
     volume = {47},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a1/}
}
TY  - JOUR
AU  - M. Z. Iofa
AU  - D. Yu. Kuznetsov
TI  - Asymptotic estimates in perturbation theory and the structure of functional integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 163
EP  - 176
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a1/
LA  - ru
ID  - TMF_1981_47_2_a1
ER  - 
%0 Journal Article
%A M. Z. Iofa
%A D. Yu. Kuznetsov
%T Asymptotic estimates in perturbation theory and the structure of functional integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 163-176
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a1/
%G ru
%F TMF_1981_47_2_a1
M. Z. Iofa; D. Yu. Kuznetsov. Asymptotic estimates in perturbation theory and the structure of functional integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/TMF_1981_47_2_a1/

[1] Lipatov L. N., “Raskhodimost ryada teorii vozmuschenii i kvaziklassika”, ZhETF, 72:2 (1977), 411–427 | MR

[2] Bender C. M., Wu T. T., “Anharmonic Oscillator. II: A Study of Perturbation Theory in Large Order”, Phys. Rev., D7:6 (1973), 1620–1636

[3] Brezin E., Le Guillou J. C., Zinn-Justin J., “Perturbation theory at large order. I: The $\Phi^{2N}$ interaction”, Phys. Rev., D15:6 (1977), 1544–1557 | MR

[4] Collins J. C., Soper D. E., “Large Order Expansion in Perturbation theory”, Ann. Phys., 112:1 (1978), 209–234 | DOI | MR

[5] Feinman R., Statisticheskaya mekhanika, Mir, M., 1978

[6] Simon B., “Coupling Constant Analyticity for the Anharmonic Oscillator”, Ann. Phys., 58:1 (1970), 76–136 | DOI | MR

[7] Bender C. M., Wu T. T., “Anharmonic Oscillator”, Phys. Rev., 184:5 (1969), 1232–1260 | DOI | MR

[8] Fainberg V. Ya., Iofa M. Z., “Asimptotic estimates in perturbation theory and complex instantons”, Phys. Lett., 79B:1 (1978), 71–74 | DOI | MR

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[10] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. 1: Semiclassical functional methods”, Phys. Rev., D10:12 (1974), 4114–4142

[11] Fainberg V. Ya., Iofa M. Z., “Analytic continuation of functional integrals, complex instantons and asimptotic perturbation series”, Nucl. Phys., B168:3/4 (1980), 495–520 | DOI | MR

[12] Callan C. D., Dashen R. F., Gross D. J., “The Structure of the Gauge theory Vacuum”, Phys. Lett., 63B:3 (1978), 334–340

[13] 'tHooft G., “Computation of the quantum effects due to a four-dimensional pseudoparticle”, Phys. Rev., D14:12 (1976), 3432–3450