Critical-point singularities
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 106-119
Cet article a éte moissonné depuis la source Math-Net.Ru
Formulas are obtained that express the susceptibility in the critical region in the ordered phase in terms of parameters of auxiliary Hamiltonians. The critical-point condition is analyzed. Relations are obtained that connect the critical behavior of the order parameter and the susceptibility, and under some additional conditions these yield the well-known equation $\gamma=\beta(\delta-1)$. The treatment is rigorous.
@article{TMF_1981_47_1_a8,
author = {V. N. Plechko},
title = {Critical-point singularities},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {106--119},
year = {1981},
volume = {47},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a8/}
}
V. N. Plechko. Critical-point singularities. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 106-119. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a8/
[1] Plechko V. N., “Singulyarnosti v kriticheskoi tochke. I: Uslovie kritichnosti i vospriimchivost”, TMF, 46:1 (1981), 111–124 | MR
[2] Bogolubov N. N., Jr., “On model dynamical systems in statistical mechanics”, Physica, 32:5 (1966), 933–944 | DOI | MR
[3] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR | Zbl
[4] Griffiths R. B., Hurst C. A., Sherman S., “Concavity of magnetization of an Ising ferromagnet in a positive external field”, J. Math. Phys., 11:3 (1970), 790–795 | DOI | MR
[5] Stenli G., Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973