Critical-point singularities
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 106-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Formulas are obtained that express the susceptibility in the critical region in the ordered phase in terms of parameters of auxiliary Hamiltonians. The critical-point condition is analyzed. Relations are obtained that connect the critical behavior of the order parameter and the susceptibility, and under some additional conditions these yield the well-known equation $\gamma=\beta(\delta-1)$. The treatment is rigorous.
@article{TMF_1981_47_1_a8,
     author = {V. N. Plechko},
     title = {Critical-point singularities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {106--119},
     year = {1981},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a8/}
}
TY  - JOUR
AU  - V. N. Plechko
TI  - Critical-point singularities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 106
EP  - 119
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a8/
LA  - ru
ID  - TMF_1981_47_1_a8
ER  - 
%0 Journal Article
%A V. N. Plechko
%T Critical-point singularities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 106-119
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a8/
%G ru
%F TMF_1981_47_1_a8
V. N. Plechko. Critical-point singularities. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 106-119. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a8/

[1] Plechko V. N., “Singulyarnosti v kriticheskoi tochke. I: Uslovie kritichnosti i vospriimchivost”, TMF, 46:1 (1981), 111–124 | MR

[2] Bogolubov N. N., Jr., “On model dynamical systems in statistical mechanics”, Physica, 32:5 (1966), 933–944 | DOI | MR

[3] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR | Zbl

[4] Griffiths R. B., Hurst C. A., Sherman S., “Concavity of magnetization of an Ising ferromagnet in a positive external field”, J. Math. Phys., 11:3 (1970), 790–795 | DOI | MR

[5] Stenli G., Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973