Ground-state wave function of a one-dimensional weakly nonideal lattice Fermi gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 96-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bogolyubov–Zubarev method of collective variab|es is used to find the ground-state wave function of a weakly nonideal one-dimensional lattice Fermi gas (in particular, the Hubbard model). The particle momentum distribution in the ground state is found in the first order in the coupling constant, and it is shown that the step in the Fermi distribution is smeared. A more realistic quasione-dimensional system is also considered and its excitation spectrum obtained.
@article{TMF_1981_47_1_a7,
     author = {V. Ya. Krivnov and A. A. Ovchinnikov},
     title = {Ground-state wave function of a~one-dimensional weakly nonideal lattice {Fermi} gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {96--105},
     year = {1981},
     volume = {47},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a7/}
}
TY  - JOUR
AU  - V. Ya. Krivnov
AU  - A. A. Ovchinnikov
TI  - Ground-state wave function of a one-dimensional weakly nonideal lattice Fermi gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1981
SP  - 96
EP  - 105
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a7/
LA  - ru
ID  - TMF_1981_47_1_a7
ER  - 
%0 Journal Article
%A V. Ya. Krivnov
%A A. A. Ovchinnikov
%T Ground-state wave function of a one-dimensional weakly nonideal lattice Fermi gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1981
%P 96-105
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a7/
%G ru
%F TMF_1981_47_1_a7
V. Ya. Krivnov; A. A. Ovchinnikov. Ground-state wave function of a one-dimensional weakly nonideal lattice Fermi gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 47 (1981) no. 1, pp. 96-105. http://geodesic.mathdoc.fr/item/TMF_1981_47_1_a7/

[1] Gaudin M., “Un systeme a une dimension de fermions en interactions”, Phys. Lett., A24:1 (1967), 55–58 | DOI | MR

[2] Yang C. N., “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[3] Lieb E. H., Wu F. Y., “Absence of Mott transition in an exact solution of the shortrange, one-bond model in the one dimension”, Phys. Rev. Lett., 1968, no. 25, 1445–1448 | DOI

[4] Krivnov V. Ya., Ovchinnikov A. A., “Novyi metod v teorii slaboneidealnogo odnomernogo fermi-gaza. Korrelyatsionnye funktsii”, ZhETF, 76:2 (1979), 654–669 ; “Новый метод в теории слабонеидеального одномерного ферми-газа”, Письма ЖЭТФ, 27:11 (1978), 644–648 | MR

[5] Bogolyubov N. N., Zubarev D. N., “Volnovaya funktsiya nizhnego sostoyaniya sistemy vzaimodeistvuyuschikh boze-chastits”, ZhETF, 28:2 (1955), 128–139 | MR

[6] Zubarev D. N., “Vychislenie konfiguratsionnykh integralov dlya sistemy chastits s kulonovskim vzaimodeistviem”, DAN SSSR, 45:4 (1954), 757–760 | MR

[7] Yukhnovskii I. R., Ukr. fiz. zh., 9, 702; (1964), 827; 12 (1967), 1674 | MR

[8] Vakarchuk I. A., Yukhnovskii I. R., “Razdelenie «normalnogo» i «sverkhtekuchego» dvizhenii v uravnenii Shredingera pri pomoschi metoda smeschenii i kollektivnykh peremennykh”, TMF, 18:1 (1974), 90–107

[9] Ovchinnikov A. A., “Spektr vozbuzhdenii v odnomernoi modeli Khabbarda”, ZhETF, 57:6 (1969), 2137–2143